Ethers, crown ethers and 18-crown-6 K+ complexes at a water/SC-CO2 interface: a molecular dynamics study

We present a molecular dynamics study of 18C6, 15C5 crown ethers and their acyclic polyether analogues at the water/supercritical-CO2 interface. The aqueous and CO2 components form distinct phases, separated by an interface, where in all systems, the ethers are found to concentrate. Simulations of the inclusive K+⊂18C6 Pic− complexes led to decomplexation of K+ and accumulation of the crown ethers on the CO2 side of the interface, while Pic− anions stack in the aqueous phase. When the K+ cations are constrained to form inclusive complexes with 18C6, all complexes concentrate at the interface, be the counterions free to move, or constrained to coordinate to K+. In the presence of nitric acid, modeled by equimolar mixtures of HNO3, NO3− and H3O+ forms, the ethers remain surface active, as does the neutral form of the acid. These simulations demonstrate the importance of interfacial phenomena in assisted ion extraction to supercritical-CO2.

[1]  G. Wipff,et al.  Interfacial activity of nitric acid at the water–supercritical CO2 interface: a molecular dynamics investigation , 2002 .

[2]  M. Baaden,et al.  Molecular Dynamics Study of the Uranyl Extraction by Tri-n-butylphosphate (TBP): Demixing of Water/“Oil”/TBP Solutions with a Comparison of Supercritical CO2 and Chloroform , 2002 .

[3]  P. Rossky,et al.  Molecular Structure of the Water−Supercritical CO2 Interface , 2001 .

[4]  M. Baaden,et al.  TBP at the Water−Oil Interface: The Effect of TBP Concentration and Water Acidity Investigated by Molecular Dynamics Simulations , 2001 .

[5]  P. Cummings,et al.  Molecular Simulation of a Dichain Surfactant/Water/Carbon Dioxide System. 1. Structural Properties of Aggregates , 2001 .

[6]  M. Baaden,et al.  The chloroform / TBP / aqueous nitric acid interfacial system: a molecular dynamics investigation , 2001 .

[7]  P. Junk STRUCTURAL ASPECTS OF OXONIUM ION/CROWN ETHER COMPLEXES , 2001 .

[8]  G. Wipff,et al.  Importance of interfacial phenomena in assisted ion extraction by supercritical CO2: a molecular dynamics investigation , 2001 .

[9]  M. Baaden,et al.  Interfacial Features of Assisted Liquid-Liquid Extraction of Uranyl and Cesium Salts: A Molecular Dynamics Investigation , 2000 .

[10]  C. Erkey Supercritical carbon dioxide extraction of metals from aqueous solutions: a review , 2000 .

[11]  G. Wipff,et al.  Distribution of hydrophilic, amphiphilic and hydrophobic ions at a liquid/liquid interface: a molecular dynamics investigation , 2000 .

[12]  R. Smith,et al.  Quantitative extraction of aqueous alkali metal ions using supercritical carbon dioxide and polyethylene glycol ligands , 2000 .

[13]  P. Mohapatra,et al.  Extraction of actinides and fission products from salt solutions using polyethylene glycols (PEGs) , 1999 .

[14]  P. Cummings,et al.  Self-Assembly of Reverse Micelles in Water/Surfactant/Carbon Dioxide Systems by Molecular Simulation , 1999 .

[15]  R. Smith,et al.  Perfluorocarboxylic acid counter ion enhanced extraction of aqueous alkali metal ions with supercritical carbon dioxide , 1999 .

[16]  L. Troxler,et al.  Simulations of Liquid-Liquid Interfaces: A Key Border in Supramolecular Chemistry , 1999 .

[17]  C. Wai,et al.  Selective extraction of strontium with supercritical fluid carbon dioxide. , 1999, Chemical communications.

[18]  A. Engler,et al.  Demixing of Binary Water−Chloroform Mixtures Containing Ionophoric Solutes and Ion Recognition at a Liquid−Liquid Interface: A Molecular Dynamics Study , 1998 .

[19]  T. Bruno,et al.  Solubility of p-t-Butylcalixarenes in Supercritical Carbon dioxide: A Comparison of Static and Dynamic Measurement Techniques , 1998 .

[20]  L. Troxler,et al.  DO PICRATE ANIONS ATTRACT EACH OTHER IN SOLUTION? MOLECULAR DYNAMICS SIMULATIONS IN WATER AND IN ACETONITRILE SOLUTIONS , 1998 .

[21]  L. Troxler,et al.  Interfacial Behavior of Ionophoric Systems: Molecular Dynamics Studies on 18-Crown-6 and Its Complexes at the Water-Chloroform Interface , 1998 .

[22]  S. Aggarwal,et al.  Thermodynamics of Extraction of Plutonium(VI) in PolyEthylene Glycol (PEG) based Aqueous Biphasic System (ABS) using 18-Crown-6 and 15-Crown-5 , 1998 .

[23]  S. Aggarwal,et al.  Thermodynamics of Extraction of Plutonium(IV) and Americium(III) in PolyEthylene Glycol (PEG) and (NH4)2SO2 based Aqueous Biphasic System (ABS) using 18-Crown-6 , 1998 .

[24]  L. Troxler,et al.  Migration of Ionophores and Salts through a Water−Chloroform Liquid−Liquid Interface: Molecular Dynamics−Potential of Mean Force Investigations , 1998 .

[25]  C. Wai,et al.  Supercritical fluid extraction: metals as complexes , 1997 .

[26]  A. Jaber,et al.  Liquid-liquid extraction of some lanthanide metal ions by polyoxyalkylene systems. , 1997, Talanta.

[27]  L. T. Taylor,et al.  Supercritical fluid extraction of metal ions and metal chelates from different environments , 1997 .

[28]  C. Wai,et al.  Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. , 1997, Talanta.

[29]  Robin D. Rogers,et al.  Metal ion separations in polyethylene glycol-based aqueous biphasic systems: correlation of partitioning behavior with available thermodynamic hydration data , 1996 .

[30]  L. Dang,et al.  Molecular dynamics simulations of CCl4–H2O liquid–liquid interface with polarizable potential models , 1996 .

[31]  A. Varnek,et al.  MD SIMULATIONS ON IONOPHORES AT A WATER-CHLOROFORM INTERFACE. PART I. CALIX4ARENES UNCOMPLEXED AND THE 222 CRYPTAND , 1996 .

[32]  L. E. Bowman,et al.  Water solubility measurements in supercritical fluids and high-pressure liquids using near-infrared spectroscopy , 1995 .

[33]  I. Benjamin THEORY AND COMPUTER SIMULATIONS OF SOLVATION AND CHEMICAL REACTIONS AT LIQUID INTERFACES , 1995 .

[34]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[35]  K. Johnston,et al.  Water-in-Carbon Dioxide Microemulsions with a Fluorocarbon-Hydrocarbon Hybrid Surfactant , 1994 .

[36]  C. Wai,et al.  Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated .Beta.-Diketones and tributyl phosphate. , 1994, Environmental science & technology.

[37]  D. Reinhoudt,et al.  Carrier-mediated transport through liquid membranes , 1994 .

[38]  L. Troxler,et al.  MD Simulations on Synthetic Ionophores and Their Cation Complexes: Comparison of Aqueous/Non-Aqueous Solvents , 1994 .

[39]  H. Watarai What's happening at the liquid—liquid interface in solvent extraction chemistry? , 1993 .

[40]  C. Wai,et al.  Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide , 1992 .

[41]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[42]  Peter A. Kollman,et al.  Many-body potential for molecular interactions , 1988 .

[43]  J. C. Barnes,et al.  18-Crown-6–potassium picrate (1/1) , 1988 .

[44]  J. Lehn,et al.  Monte Carlo study of the conformation-dependent hydration of the 18-crown-6 macrocycle , 1985 .

[45]  J. Behr,et al.  Carrier-mediated transport through bulk liquid membranes: dependence of transport rates and selectivity on carrier properties in a diffusion-limited process , 1985 .

[46]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[47]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[48]  Ian R. McDonald,et al.  Interaction site models for carbon dioxide , 1981 .

[49]  John L. Oscarson,et al.  The relationship between complex stability constants and rates of cation transport through liquid membranes by macrocyclic carriers , 1980 .

[50]  J. Dunitz,et al.  1,4,7,10,13,16‐Hexaoxacyclooctadecane: crystal structure at 100 K , 1980 .