On Lipschitz Continuous Optimal Stopping Boundaries

We obtain a probabilistic proof of the local Lipschitz continuity for the optimal stopping boundary of a class of problems with state space $[0,T]\times\mathbb{R}^d$, $d\ge 1$. To the best of our knowledge this is the only existing proof that relies exclusively upon stochastic calculus, all the other proofs making use of PDE techniques and integral equations. Thanks to our approach we obtain our result for a class of diffusions whose associated second order differential operator is not necessarily uniformly elliptic. The latter condition is normally assumed in the related PDE literature.

[1]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[2]  T. D. Angelis,et al.  The dividend problem with a finite horizon , 2016, 1609.01655.

[3]  H. P. Jr. Mackean,et al.  Appendix : A free boundary problem for the heat equation arising from a problem in mathematical economics , 1965 .

[4]  S. Federico,et al.  On the Optimal Boundary of a Three-Dimensional Singular Stochastic Control Problem Arising in Irreversible Investment , 2014 .

[5]  Ulrich G. Haussmann,et al.  On a Stochastic, Irreversible Investment Problem , 2009, SIAM J. Control. Optim..

[6]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[7]  P. Moerbeke On optimal stopping and free boundary problems , 1973, Advances in Applied Probability.

[8]  Steven E. Shreve,et al.  A free boundary problem related to singular stochastic control , 1990 .

[9]  Damien Lamberton,et al.  Critical price near maturity for an American option on a dividend-paying stock , 2003 .

[10]  Tiziano De Angelis,et al.  On the free boundary of an annuity purchase , 2017, Finance Stochastics.

[11]  Salvatore Federico,et al.  Optimal Boundary Surface for Irreversible Investment with Stochastic Costs , 2014, Math. Oper. Res..

[12]  I. Kim The Analytic Valuation of American Options , 1990 .

[13]  Goran Peskir,et al.  Continuity of the optimal stopping boundary for two-dimensional diffusions , 2019, The Annals of Applied Probability.

[14]  Xinfu Chen,et al.  A Mathematical Analysis of the Optimal Exercise Boundary for American Put Options , 2007, SIAM J. Math. Anal..

[15]  J. Cannon,et al.  On the infinite differentiability of the free boundary in a Stefan problem , 1968 .

[16]  Daniel B. Kotlow A free boundary problem connected with the optimal stopping problem for diffusion processes , 1973 .

[17]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[18]  Xinfu Chen,et al.  CONVEXITY OF THE EXERCISE BOUNDARY OF THE AMERICAN PUT OPTION ON A ZERO DIVIDEND ASSET , 2007 .

[19]  Erik Ekström Convexity of the optimal stopping boundary for the American put option , 2004 .

[20]  S. Jacka Optimal Stopping and the American Put , 1991 .

[21]  S. Kumagai An implicit function theorem: Comment , 1980 .

[22]  M. Bartlett,et al.  Markov Processes and Potential Theory , 1972, The Mathematical Gazette.

[23]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[24]  G. Peskir ON THE AMERICAN OPTION PROBLEM , 2005 .

[25]  Adrien Blanchet,et al.  On the regularity of the free boundary in the parabolic obstacle problem. Application to American options , 2006 .

[26]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[27]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[28]  H. Soner,et al.  Regularity of the value function for a two-dimensional singular stochastic control problem , 1989 .

[29]  G. Peskir,et al.  Quickest detection problems for Bessel processes , 2017 .

[30]  Tiziano De Angelis,et al.  A Note on the Continuity of Free-Boundaries in Finite-Horizon Optimal Stopping Problems for One-Dimensional Diffusions , 2013, SIAM J. Control. Optim..

[31]  Avner Friedman,et al.  Parabolic variational inequalities in one space dimension and smoothness of the free boundary , 1975 .

[32]  A. Petrosyan,et al.  Regularity of Free Boundaries in Obstacle-type Problems , 2012 .

[33]  Erhan Bayraktar,et al.  Analysis of the Optimal Exercise Boundary of American Options for Jump Diffusions , 2007, SIAM J. Math. Anal..

[34]  H. Soner,et al.  A free boundary problem related to singular stochastic control: the parabolic case , 1991 .

[35]  S. Salsa,et al.  Regularity of the free boundary of an American option on several assets , 2009 .

[36]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[37]  K. Jittorntrum An implicit function theorem , 1978 .

[38]  David G Schaeffer,et al.  A new proof of the infinite differentiability of the free boundary in the Stefan problem , 1976 .