Pyrolysis of solid fuels: Thermochemical behaviour, kinetics and compensation effect

[1]  N. García-Hernando,et al.  Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model , 2015 .

[2]  R. C. Sastry,et al.  Kinetic study of solid waste pyrolysis using distributed activation energy model. , 2015, Bioresource technology.

[3]  J. Hayashi,et al.  Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis , 2013 .

[4]  S. Scaccia TG-FTIR and kinetics of devolatilization of Sulcis coal , 2013 .

[5]  Qinghai Li,et al.  Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis , 2013 .

[6]  Wen-Jhy Lee,et al.  Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends , 2013 .

[7]  S. Vassilev,et al.  An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification , 2013 .

[8]  Xifeng Zhu,et al.  In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. , 2013, Bioresource technology.

[9]  N. García-Hernando,et al.  Analysis of biomass and sewage sludge devolatilization using the distributed activation energy model , 2013 .

[10]  Benedetta de Caprariis,et al.  Double-Gaussian Distributed Activation Energy Model for Coal Devolatilization , 2012 .

[11]  Mejdi Jeguirim,et al.  Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres , 2012 .

[12]  S. Vassilev,et al.  An overview of the organic and inorganic phase composition of biomass , 2012 .

[13]  J. Markoš,et al.  Calculation of Kinetic Parameters of the Thermal Decomposition of Wood by Distributed Activation Energy Model (DAEM) , 2012 .

[14]  Luca Fiori,et al.  Modeling of the devolatilization kinetics during pyrolysis of grape residues. , 2012, Bioresource technology.

[15]  Sang Shin Park,et al.  Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species , 2011 .

[16]  Ying Huang,et al.  The Effect of Biomass Components on the Co-combustion Characteristics of Biomass with Coal , 2011, 2011 Second International Conference on Digital Manufacturing & Automation.

[17]  E. Meyer,et al.  Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere , 2011 .

[18]  Baosheng Jin,et al.  Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. , 2011, Bioresource technology.

[19]  L. Irusta,et al.  Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR. , 2010 .

[20]  Mohd Jindra Aris,et al.  Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). , 2010, Bioresource technology.

[21]  S. Vassilev,et al.  An overview of the chemical composition of biomass , 2010 .

[22]  Jenny M. Jones,et al.  Kinetics of the thermal decomposition of biomass , 2010 .

[23]  E. Jakab,et al.  Tobacco pyrolysis. Kinetic evaluation of thermogravimetric–mass spectrometric experiments , 2009 .

[24]  M. Navarro,et al.  Application of the distributed activation energy model to biomass and biomass constituents devolatilization , 2009 .

[25]  A. Aboulkas,et al.  Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry , 2009 .

[26]  Fengyin Wang,et al.  Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. , 2009 .

[27]  Junmeng Cai,et al.  New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. , 2008, Bioresource technology.

[28]  M. Hanna,et al.  Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock , 2008 .

[29]  Taro Sonobe,et al.  Kinetic analyses of biomass pyrolysis using the distributed activation energy model , 2008 .

[30]  H. Spliethoff,et al.  TG-FTIR pyrolysis of coal and secondary biomass fuels: Determination of pyrolysis kinetic parameters for main species and NOx precursors , 2007 .

[31]  G. Várhegyi Aims and methods in non-isothermal reaction kinetics , 2007 .

[32]  Serdar Yaman,et al.  Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis , 2007 .

[33]  D. Vamvuka,et al.  A comparative reactivity and kinetic study on the combustion of coal–biomass char blends , 2006 .

[34]  J. S. Dennis,et al.  An algorithm for determining the kinetics of devolatilisation of complex solid fuels from thermogravimetric experiments , 2006 .

[35]  M. Folgueras,et al.  Pyrolysis of blends of different types of sewage sludge with one bituminous coal , 2005 .

[36]  C. Blasi,et al.  Critical evaluation of global mechanisms of wood devolatilization , 2005 .

[37]  Chen Donghua,et al.  Kinetic studies on the pyrolysis of chitin and chitosan , 2005 .

[38]  Qun-fang Lei,et al.  Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy , 2005 .

[39]  M. Serio,et al.  Kinetics of methane and tar evolution during coal pyrolysis , 2005 .

[40]  Susan E. Wrenn,et al.  A biomass pyrolysis sub-model for CFD applications , 2004 .

[41]  Mustafa Günes,et al.  A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note) , 2002, Appl. Math. Comput..

[42]  Covadonga Pevida,et al.  A comparison of different methods for predicting coal devolatilisation kinetics , 2001 .

[43]  J. A. Conesa,et al.  Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data , 2001 .

[44]  T. Durusoy,et al.  Pyrolysis kinetics of blends of Tunçbilek lignite with Denizli peat , 1999 .

[45]  Colomba Di Blasi,et al.  Reactivities of some biomass chars in air , 1999 .

[46]  K. Miura,et al.  A Simple Method for Estimating f(E) and k0(E) in the Distributed Activation Energy Model , 1998 .

[47]  David Deming,et al.  Thermal conductivity of U.S. coals , 1996 .

[48]  Michael Jerry Antal,et al.  Thermal Lag, Fusion, and the Compensation Effect during Biomass Pyrolysis† , 1996 .

[49]  M. Grønli,et al.  A theoretical and experimental study of the thermal degradation of biomass , 1996 .

[50]  R. Font,et al.  Application of the transition state theory to the pyrolysis of biomass and tars , 1995 .

[51]  T. Fletcher,et al.  Impact of coal pyrolysis on combustion , 1994 .

[52]  S. Niksa,et al.  Global rates of devolatilization for various coal types , 1993 .

[53]  R. Agrawal The compensation effect: A fact or a fiction , 1989 .

[54]  G. Várhegyi,et al.  Kinetic Aspects of Thermal Analysis , 1989 .

[55]  R. Agrawal Compensation effect in the pyrolysis of cellulosic materials , 1985 .

[56]  D. L. Pyle,et al.  Heat transfer and kinetics in the low temperature pyrolysis of solids , 1984 .

[57]  I. W. Smith,et al.  The combustion rates of coal chars: A review , 1982 .

[58]  F. E. Rogers,et al.  Kinetics of Cellulose Pyrolysis in Nitrogen and Steam , 1980 .

[59]  Jack B. Howard,et al.  Coal devolatilization and hydrogastification , 1976 .

[60]  P. G. W. Hawksley,et al.  Kinetics of Thermal Decomposition of Pulverized Coal Particles , 1970 .

[61]  V. Vand A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum , 1943 .