Lower Semicontinuity in SBV for Integrals with Variable Growth

We prove a lower semicontinuity result for free discontinuity energies with a quasiconvex volume term having nonstandard growth and a surface term.

[1]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[2]  L. Evans Measure theory and fine properties of functions , 1992 .

[3]  Jan Kristensen,et al.  Lower semicontinuity in spaces of weakly differentiable functions , 1999 .

[4]  N. Fusco,et al.  A lower semi-continuity result for polyconvex functionals in SBV , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[5]  M. Ružička,et al.  Mathematical modeling of electrorheological materials , 2001 .

[6]  S. Samko On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .

[7]  Fu Yong,et al.  Semicontinuity Problems in the Calculus of Variations , 2000 .

[8]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[9]  菊地 光嗣,et al.  書評 L.Ambrosio, N.Fusco and D.Pallara: Functions of Bounded Variation and Free Discontinuity Problems , 2002 .

[10]  J. Málek,et al.  On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications , 2008 .

[11]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[12]  E. Virga Drops of nematic liquid crystals , 1989 .

[13]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[14]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[15]  Giuseppe Mingione,et al.  Integral Functionals and the Gap Problem: Sharp Bounds for Relaxation and Energy Concentration , 2005, SIAM J. Math. Anal..

[16]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[17]  N. Fusco,et al.  LOWER SEMICONTINUITY RESULTS FOR FREE DISCONTINUITY ENERGIES , 2010 .

[18]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[19]  Kumbakonam R. Rajagopal,et al.  On the modeling of electrorheological materials , 1996 .

[20]  L. Ambrosio On the lower semicontinuity of quasiconvex integrals in SBV W , R k , 1994 .

[21]  D. Cruz-Uribe,et al.  THE MAXIMAL FUNCTION ON VARIABLE L p SPACES , 2022 .

[22]  Luigi Ambrosio,et al.  A new proof of the SBV compactness theorem , 1995 .

[23]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[24]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[25]  A. Nekvinda Hardy-Littlewood maximal operator on L^p(x) (ℝ) , 2004 .

[26]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[27]  Peter Hästö,et al.  Minimizers of the variable exponent, non-uniformly convex Dirichlet energy , 2008 .

[28]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[29]  L. Ambrosio,et al.  New Functionals in Calculus of Variations , 1989 .

[30]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[31]  T. Kao Functionals In The Calculus Of Variations , 1970 .

[32]  I. Fonseca,et al.  Relaxation inBV versus quasiconvexification inW1,p; a model for the interaction between fracture and damage , 1995 .

[33]  A. Lerner Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces , 2005 .