The concept of the MCAO upgrade for the Daniel K. Inouye Solar Telescope

The 4-meter Daniel K. Inouye Solar Telescope shall be upgraded with a mirror multi-conjugate adaptive optics system a few years after first light, replacing its initial high-order single conjugate system. We present the technical concept of this system and its subsystems. The system design sports three deformable mirrors, nine correlating Shack-Hartmann wavefront sensors, and a computer cluster for the control loop. We discuss the demands and challenges as well as our plans to implement the wavefront sensing and control systems.

[1]  Friedrich Wöger,et al.  Status of the DKIST system for solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[2]  Francois Rigaut,et al.  Clear widens the field for observations of the Sun with multi-conjugate adaptive optics , 2017 .

[3]  B. Goodrich,et al.  The adaptive optics and wavefront correction systems for the Advanced Technology Solar Telescope , 2010, Astronomical Telescopes + Instrumentation.

[4]  Steve Hegwer,et al.  Progress with solar multi-conjugate adaptive optics at NSO , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  Thomas Berkefeld,et al.  Multi-conjugate Adaptive Optics at Big Bear Solar Observatory , 2015 .

[6]  F. Heidecke,et al.  Testbed for the multi-conjugate adaptive optics system of the solar telescope GREGOR , 2009, Optical Engineering + Applications.

[7]  Thomas Berkefeld,et al.  GREGOR MCAO looking at the Sun , 2014, Astronomical Telescopes and Instrumentation.

[8]  Friedrich Wöger,et al.  Solar adaptive optics with the DKIST: status report , 2014, Astronomical Telescopes and Instrumentation.

[9]  Francois Rigaut,et al.  Multiconjugate Adaptive Optics for Astronomy , 2018, Annual Review of Astronomy and Astrophysics.

[10]  P. Hickson Atmospheric and adaptive optics , 2014 .

[11]  Thomas Rimmele,et al.  The multi-conjugate adaptive optics system of the New Solar Telescope at Big Bear Solar Observatory , 2014, Astronomical Telescopes and Instrumentation.

[12]  Friedrich Wöger,et al.  Laboratory integration of the DKIST wavefront correction system , 2018, Astronomical Telescopes + Instrumentation.

[13]  Thomas R. Rimmele,et al.  Solar Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[14]  Jacques M. Beckers,et al.  Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. , 1988 .

[15]  Friedrich Wöger,et al.  Progress in multi-conjugate adaptive optics at Big Bear Solar Observatory , 2016, Astronomical Telescopes + Instrumentation.

[16]  Robert H. Dicke,et al.  Phase-contrast detection of telescope seeing errors and their correction. , 1975 .

[17]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[18]  Philip R. Goode,et al.  Optical design of the Big Bear Solar Observatory's multi-conjugate adaptive optics system , 2014, Astronomical Telescopes and Instrumentation.

[19]  Friedrich Wöger,et al.  A review of solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[20]  Thomas Berkefeld,et al.  From Clear to DKIST: advancing solar MCAO from 1.6 to 4 meters , 2018, Astronomical Telescopes + Instrumentation.

[21]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[22]  Malcolm Smith,et al.  The Real-Time controller (RTC) for the Narrow Field Infrared Adaptive Optics System (NFIRAOS) for TMT final design , 2018, Astronomical Telescopes + Instrumentation.

[23]  Thomas Berkefeld,et al.  Results of the multi-conjugate adaptive optics system at the German solar telescope, Tenerife , 2005, SPIE Optics + Photonics.

[24]  Thomas Berkefeld,et al.  Adaptive optics development at the German solar telescopes , 2010 .

[25]  Robert P. Hubbard,et al.  The wavefront correction system for the Advanced Technology Solar Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.