The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments

The Open University's repository of research publications and other research outputs The production of platinum-coated silicate nanoparti-cle aggregates for use in hypervelocity impact experiments Journal Article (2009). The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments. Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments, Planetary and Space Science, This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A c c e p t e d m a n u s c r i p t 1 The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity 2 impact experiments 3 4 5 A c c e p t e d m a n u s c r i p t

[1]  F. Postberg,et al.  Discriminating contamination from particle components in spectra of Cassini's dust detector CDA , 2009 .

[2]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[3]  H. Makse,et al.  A phase diagram for jammed matter , 2008, Nature.

[4]  R. Clark,et al.  Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system , 2007 .

[5]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[6]  E. Grün,et al.  Cosima – High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta , 2007 .

[7]  E. Grün,et al.  Large area mass analyzer instrument for the chemical analysis of interstellar dust particles. , 2007, The Review of scientific instruments.

[8]  Kentaro Uesugi,et al.  Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust , 2006, Science.

[9]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[10]  R. Jaumann,et al.  Composition and Physical Properties of Enceladus' Surface , 2006, Science.

[11]  Johan Warell,et al.  The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury , 2006 .

[12]  A. Tielens,et al.  Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium , 2005, astro-ph/0510156.

[13]  E. Grün,et al.  High-velocity streams of dust originating from Saturn , 2005, Nature.

[14]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[15]  S. Sandford,et al.  Interplanetary dust particles. , 2003 .

[16]  F. R. Krueger,et al.  Cometary and Interstellar Dust Analyzer for comet Wild 2 , 2003 .

[17]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[18]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[19]  Simon F. Green,et al.  Laboratory calibration of the Cassini Cosmic Dust Analyser (CDA) using new, low density projectiles , 2002 .

[20]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[21]  M. Burchell,et al.  Acceleration of conducting polymer-coated latex particles as projectiles in hypervelocity impact experiments , 1999 .

[22]  Michael J. S. Belton,et al.  Galileo's Multiinstrument Spectral View of Europa's Surface Composition , 1999 .

[23]  On Composition , 1992, Syncategoreumata.

[24]  D. Brownlee,et al.  An Interplanetary Dust Particle Linked Directly to Type CM Meteorites and an Asteroidal Origin , 1991, Science.

[25]  E. Grün,et al.  Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles , 1989 .

[26]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[27]  Eberhard Grün,et al.  The ion-composition of the plasma produced by impacts of fast dust particles , 1977 .

[28]  G. Eichhorn Analysis of the hypervelocity impact process from impact flash measurements , 1976 .

[29]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[30]  J. S. Kam,et al.  DUNE-eXpress Dust astronomy with ConeXpress , 2006 .

[31]  E. Grün,et al.  Laboratory detection of organic dust with the Cassini-CDA instrument , 2004 .

[32]  M. Stübig New insights in impact ionization and in time-of-flight mass spectroscopy with micrometeoroid detectors by improved impact simulations in the laboratory , 2002 .

[33]  J. Dorschner Interstellar Dust and Circumstellar Dust Disks , 2001 .

[34]  P. R. Ratcliff,et al.  Velocity thresholds for impact plasma production , 1997 .

[35]  Elmar K. Jessberger,et al.  Chemical Properties of Cometary Dust and A Note on Carbon Isotopes , 1991 .

[36]  D. Whittet The Composition of Dust in Stellar Ejecta , 1989 .

[37]  K. Ikeda,et al.  A Spectroscopic Study of the , 2022 .