An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons

To investigate excitatory and inhibitory GABA actions in cortical neuronal networks, we present a novel optogenetic approach using a mouse knock-in line with conditional expression of channelrhodopsin-2 (ChR2) in GABAergic interneurons. During whole-cell recordings from hippocampal and neocortical slices from postnatal day (P) 2–P15 mice, photostimulation caused depolarization and excitation of interneurons and evoked barrages of postsynaptic GABAergic currents. Excitatory/inhibitory GABA actions on pyramidal cells were assessed by monitoring the alteration in the frequency of EPSCs during photostimulation of interneurons. We found that in slices from P2–P8 mice, photostimulation evoked an increase in EPSC frequency, whereas in P9–P15 mice the response switched to a reduction in EPSC frequency, indicating a developmental excitatory-to-inhibitory switch in GABA actions on glutamatergic neurons. Using a similar approach in urethane-anesthetized animals in vivo, we found that photostimulation of interneurons reduces EPSC frequency at ages P3–P9. Thus, expression of ChR2 in GABAergic interneurons of mice enables selective photostimulation of interneurons during the early postnatal period, and these mice display a developmental excitatory-to-inhibitory switch in GABA action in cortical slices in vitro, but so far show mainly inhibitory GABA actions on spontaneous EPSCs in the immature hippocampus and neocortex in vivo. SIGNIFICANCE STATEMENT We report a novel optogenetic approach for investigating excitatory and inhibitory GABA actions in mice with conditional expression of channelrhodopsin-2 in GABAergic interneurons. This approach shows a developmental excitatory-to-inhibitory switch in the actions of GABA on glutamatergic neurons in neocortical and hippocampal slices from neonatal mouse pups in vitro, but also reveals inhibitory GABA actions in the neonatal mouse neocortex and hippocampus in vivo.

[1]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[2]  G. Fishell,et al.  Oxytocin enhancement of CA1 spike transmission by modulation of fast-spiking interneurons , 2013, Nature.

[3]  R. Khazipov,et al.  Depolarizing GABA and Developmental Epilepsies , 2015, CNS neuroscience & therapeutics.

[4]  J. A. Payne,et al.  Cation-chloride cotransporters in neuronal development, plasticity and disease , 2014, Nature Reviews Neuroscience.

[5]  R. Khazipov,et al.  Postnatal changes in somatic γ‐aminobutyric acid signalling in the rat hippocampus , 2008, The European journal of neuroscience.

[6]  Mario Treviño,et al.  GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments. , 2008, Journal of neurophysiology.

[7]  N. R. Remley,et al.  Effects of urethane on hippocampal unit activity in the rat , 1978, Brain Research Bulletin.

[8]  T. Iwaki,et al.  Reduction of KCC2 Expression and GABAAReceptor-Mediated Excitation after In Vivo Axonal Injury , 2002, The Journal of Neuroscience.

[9]  Knut Holthoff,et al.  GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo , 2015, Nature Communications.

[10]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[11]  R. Khazipov,et al.  Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery , 2006, Science.

[12]  R. Khazipov,et al.  Traumatic Alterations in GABA Signaling Disrupt Hippocampal Network Activity in the Developing Brain , 2012, The Journal of Neuroscience.

[13]  U. Heinemann,et al.  Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO. , 2005, Brain : a journal of neurology.

[14]  Marat Minlebaev,et al.  Newborn Analgesia Mediated by Oxytocin during Delivery , 2011, Front. Cell. Neurosci..

[15]  Yehezkel Ben-Ari,et al.  In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures , 2003, Nature Neuroscience.

[16]  Arnold R. Kriegstein,et al.  Is there more to gaba than synaptic inhibition? , 2002, Nature Reviews Neuroscience.

[17]  G. Buzsáki,et al.  Inhibition-Induced Theta Resonance in Cortical Circuits , 2013, Neuron.

[18]  A. N. van den Pol,et al.  Excitatory Actions of GABA after Neuronal Trauma , 1996, The Journal of Neuroscience.

[19]  J. Knierim The hippocampus , 2015, Current Biology.

[20]  W. Willis John Eccles’ studies of spinal cord presynaptic inhibition , 2006, Progress in Neurobiology.

[21]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[22]  Dominique M. Durand,et al.  Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation , 2015, Experimental Neurology.

[23]  K. Holthoff,et al.  GABA Depolarizes Immature Neocortical Neurons in the Presence of the Ketone Body β-Hydroxybutyrate , 2010, The Journal of Neuroscience.

[24]  D. R. Curtis,et al.  GABA, Bicuculline and Central Inhibition , 1970, Nature.

[25]  I. Módy,et al.  Laminar profiles of the changes in extracellular calcium concentration induced by repetitive stimulation and excitatory amino acids in the rat dentate gyrus , 1986, Neuroscience Letters.

[26]  R. Tyzio,et al.  Timing of the Developmental Switch in GABAA Mediated Signaling from Excitation to Inhibition in CA3 Rat Hippocampus Using Gramicidin Perforated Patch and Extracellular Recordings , 2007, Epilepsia.

[27]  M. Sceniak,et al.  Cellular actions of urethane on rat visual cortical neurons in vitro. , 2006, Journal of neurophysiology.

[28]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Alexei Morozov,et al.  Input-specific excitation of olfactory cortex microcircuits , 2012, Front. Neural Circuits.

[30]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[31]  J. Mulder,et al.  GABA action in immature neocortical neurons directly depends on the availability of ketone bodies , 2009, Journal of neurochemistry.

[32]  Mark Farrant,et al.  The cellular, molecular and ionic basis of GABA(A) receptor signalling. , 2007, Progress in brain research.

[33]  K. Kaila,et al.  Spontaneous Network Events Driven by Depolarizing GABA Action in Neonatal Hippocampal Slices are Not Attributable to Deficient Mitochondrial Energy Metabolism , 2010, The Journal of Neuroscience.

[34]  Michel A. Picardo,et al.  Depolarizing Actions of GABA in Immature Neurons Depend Neither on Ketone Bodies Nor on Pyruvate , 2011, The Journal of Neuroscience.

[35]  S. Prescott,et al.  Chloride regulation in the pain pathway , 2009, Brain Research Reviews.

[36]  A. N. van den Pol,et al.  GABA excitation in mouse hilar neuropeptide Y neurons , 2007, The Journal of physiology.

[37]  Marcello Massimini,et al.  Spatial Buffering during Slow and Paroxysmal Sleep Oscillations in Cortical Networks of Glial Cells In Vivo , 2002, The Journal of Neuroscience.

[38]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[39]  Szabolcs Káli,et al.  Mechanisms of Sharp Wave Initiation and Ripple Generation , 2014, The Journal of Neuroscience.

[40]  Michael Wehr,et al.  Parvalbumin-Expressing Inhibitory Interneurons in Auditory Cortex Are Well-Tuned for Frequency , 2013, The Journal of Neuroscience.

[41]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[42]  Julien Dine,et al.  Optogenetic evocation of field inhibitory postsynaptic potentials in hippocampal slices: a simple and reliable approach for studying pharmacological effects on GABAA and GABAB receptor-mediated neurotransmission , 2014, Front. Cell. Neurosci..

[43]  M. Mukhtarov,et al.  Dynamic Changes from Depolarizing to Hyperpolarizing GABAergic Actions during Giant Depolarizing Potentials in the Neonatal Rat Hippocampus , 2015, The Journal of Neuroscience.

[44]  T. Ishizuka,et al.  Molecular Determinants Differentiating Photocurrent Properties of Two Channelrhodopsins from Chlamydomonas* , 2009, Journal of Biological Chemistry.

[45]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[46]  Ilan Lampl,et al.  Optopatcher—An electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation , 2013, Journal of Neuroscience Methods.

[47]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[48]  R. Khazipov,et al.  Cell-attached recordings of responses evoked by photorelease of GABA in the immature cortical neurons , 2013, Front. Cell. Neurosci..

[49]  W. Chiu,et al.  Real-Time Electrochemical Recording of Dopamine Release under Optogenetic Stimulation , 2014, PloS one.

[50]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[51]  M. Koelle,et al.  An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans , 2015, Genetics.

[52]  Dmitry Suchkov,et al.  Imprecise Whisker Map in the Neonatal Rat Barrel Cortex. , 2015, Cerebral cortex.

[53]  Henrike Planert,et al.  Target Selectivity of Feedforward Inhibition by Striatal Fast-Spiking Interneurons , 2013, The Journal of Neuroscience.

[54]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[55]  G. Maccaferri,et al.  Novel GABAergic Circuits Mediating Excitation/Inhibition of Cajal-Retzius Cells in the Developing Hippocampus , 2013, The Journal of Neuroscience.

[56]  J. Voipio,et al.  GABA actions and ionic plasticity in epilepsy , 2014, Current Opinion in Neurobiology.

[57]  J. Voipio,et al.  Two developmental switches in GABAergic signalling: the K+–Cl− cotransporter KCC2 and carbonic anhydrase CAVII , 2005, The Journal of physiology.

[58]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[59]  Marat Minlebaev,et al.  Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. , 2007, Journal of neurophysiology.

[60]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[61]  E. Bamberg,et al.  Channelrhodopsin-2 is a leaky proton pump , 2009, Proceedings of the National Academy of Sciences.

[62]  Peter Hegemann,et al.  Rectification of the channelrhodopsin early conductance. , 2011, Biophysical journal.

[63]  J. Bradley,et al.  An excitatory GABA loop operating in vivo , 2015, Front. Cell. Neurosci..

[64]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[65]  Rafael Yuste,et al.  State-Dependent Function of Neocortical Chandelier Cells , 2011, The Journal of Neuroscience.

[66]  S. Seri,et al.  Photosensitive Benign Myoclonic Epilepsy in Infancy , 2007, Epilepsia.

[67]  C. Nicholson,et al.  Calcium decrease associated with aminopyridine-induced potassium increase in cat cerebellum , 1976, Neuroscience Letters.

[68]  Michel A. Picardo,et al.  Pioneer glutamatergic cells develop into a morpho-functionally distinct population in the juvenile CA3 hippocampus , 2012, Nature Communications.

[69]  M. Kokaia,et al.  Global Optogenetic Activation of Inhibitory Interneurons during Epileptiform Activity , 2014, The Journal of Neuroscience.

[70]  A. Kriegstein,et al.  Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. , 1999, Journal of neurophysiology.

[71]  R. Khazipov,et al.  Excitatory actions of GABA in the intact neonatal rodent hippocampus in vitro , 2013, Front. Cell. Neurosci..

[72]  K. Krnjević,et al.  Iontophoretic studies of neurones in the mammalian cerebral cortex , 1963, The Journal of physiology.