Exploring atomic mechanisms of microstructure evolutions in crystals under vacancy super- or undersaturation states by a kinetic amplitude-expanded phase-field-crystal approach

[1]  M. Diehl,et al.  Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing , 2021 .

[2]  J. Aktaa,et al.  Post-irradiation annealing of neutron-irradiated EUROFER97 , 2021 .

[3]  H. Deng,et al.  Mechanisms for <100> interstitial dislocation loops to diffuse in BCC iron , 2021, Nature communications.

[4]  Xiaodong Yan,et al.  Phase field model for self-climb of prismatic dislocation loops by vacancy pipe diffusion , 2020, International Journal of Plasticity.

[5]  Giacomo Po,et al.  Discrete stochastic model of point defect-dislocation interaction for simulating dislocation climb , 2021 .

[6]  J. Aktaa,et al.  Direct observation of dislocation loops shrinkage upon annealing neutron-irradiated Fe–9Cr alloy , 2020 .

[7]  M. E. Foster,et al.  Line-length-dependent dislocation mobilities in an FCC stainless steel alloy , 2020 .

[8]  C. Becquart,et al.  A phase field model for dislocation climb under irradiation: Formalism and applications to pure bcc iron and ferritic alloys , 2020 .

[9]  G. Kugler,et al.  Enabling simulations of grains within a full rotation range in amplitude expansion of the phase-field crystal model. , 2020, Physical review. E.

[10]  A. Voigt,et al.  A coarse-grained phase-field crystal model of plastic motion , 2019, Journal of the Mechanics and Physics of Solids.

[11]  Kun Wang,et al.  Plasticity and phase transition of crystals under continuous deformations by phase field crystal approach , 2019, International Journal of Plasticity.

[12]  A. Voigt,et al.  Closing the gap between atomic-scale lattice deformations and continuum elasticity , 2018, npj Computational Materials.

[13]  L. Angheluta,et al.  Separation of Elastic and Plastic Timescales in a Phase Field Crystal Model. , 2018, Physical review letters.

[14]  Suvranu De,et al.  Shockwave generates < 100 > dislocation loops in bcc iron , 2018, Nature Communications.

[15]  G. Kugler,et al.  Adaptive mesh simulations of polycrystalline materials using a Cartesian representation of an amplitude expansion of the phase-field-crystal model , 2018, Physical Review E.

[16]  V. Levitas,et al.  Phase-field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. simulations of phase transformations Si I↔ Si II , 2018, International Journal of Plasticity.

[17]  V. Levitas Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part I. General theory , 2018, International Journal of Plasticity.

[18]  G. Po,et al.  A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials , 2018 .

[19]  Zi-Le Wang,et al.  Elastic constants of stressed and unstressed materials in the phase-field crystal model , 2017, 1712.07753.

[20]  Huajian Gao,et al.  Phase field crystal modeling of grain boundary structures and growth in polycrystalline graphene , 2017, Journal of the Mechanics and Physics of Solids.

[21]  L. Angheluta,et al.  Dislocation dynamics and crystal plasticity in the phase-field crystal model , 2017, 1710.05320.

[22]  Z. G. Wang,et al.  Molecular dynamics study of the interaction between nanoscale interstitial dislocation loops and grain boundaries in BCC iron , 2018 .

[23]  Z. Zhuang,et al.  Modeling high temperature anneal hardening in Au submicron pillar by developing coupled dislocation glide-climb model , 2017 .

[24]  Saeed Ziaei-Rad,et al.  Constitutive modeling of strain induced grain boundary migration via coupling crystal plasticity and phase-field methods , 2017 .

[25]  R. F. Zhang,et al.  New understanding of nano-scale interstitial dislocation loops in BCC iron , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  P. Voorhees,et al.  Phase field crystal simulation of grain boundary motion, grain rotation and dislocation reactions in a BCC bicrystal , 2017 .

[27]  A. Voigt,et al.  Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model. , 2017, Physical review. E.

[28]  T. Ala‐Nissila,et al.  Consistent Hydrodynamics for Phase Field Crystals. , 2015, Physical review letters.

[29]  C. Sinclair,et al.  Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods , 2015, 1509.02565.

[30]  Wenjun Zhu,et al.  Coupling between plasticity and phase transition of polycrystalline iron under shock compressions , 2015 .

[31]  N. Provatas,et al.  New density functional approach for solid-liquid-vapor transitions in pure materials. , 2014, Physical review letters.

[32]  Wenjun Zhu,et al.  An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals , 2014 .

[33]  P. Voorhees,et al.  Phase-field crystal model with a vapor phase. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  V. Bulatov,et al.  Automated identification and indexing of dislocations in crystal interfaces , 2012 .

[35]  H. Löwen,et al.  Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview , 2012, 1207.0257.

[36]  N. Provatas,et al.  Phase-field-crystal methodology for modeling of structural transformations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  N. Provatas,et al.  Free energy functionals for efficient phase field crystal modeling of structural phase transformations. , 2010, Physical review letters.

[38]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[39]  Zhi-Feng Huang,et al.  Density-amplitude formulation of the phase-field crystal model for two-phase coexistence in two and three dimensions , 2010 .

[40]  H. Löwen,et al.  Classical density functional theory: an ideal tool to study heterogeneous crystal nucleation , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  N. Goldenfeld,et al.  Nonlinear elasticity of the phase-field crystal model from the renormalization group. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  N. Goldenfeld,et al.  Molecular dynamics on diffusive time scales from the phase-field-crystal equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Nikolas Provatas,et al.  Deriving surface-energy anisotropy for phenomenological phase-field models of solidification. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Hirotaro Mori,et al.  Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops , 2007, Science.

[45]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[46]  M. Grant,et al.  Phase-field crystal modeling and classical density functional theory of freezing , 2007 .

[47]  H. Mori,et al.  Changes in the Burgers vector of perfect dislocation loops without contact with the external dislocations. , 2006, Physical review letters.

[48]  A. Karma,et al.  Ginzburg-Landau theory of crystalline anisotropy for bcc-liquid interfaces , 2006, cond-mat/0601057.

[49]  N. Goldenfeld,et al.  Renormalization Group Approach to Multiscale Modelling in Materials Science , 2005, cond-mat/0508671.

[50]  N. Goldenfeld,et al.  Renormalization group approach to multiscale simulation of polycrystalline materials using the phase field crystal model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Vasily V. Bulatov,et al.  Mobility laws in dislocation dynamics simulations , 2003 .

[52]  Martin Grant,et al.  Modeling elasticity in crystal growth. , 2001, Physical review letters.

[53]  T. Allen,et al.  Microstructural changes induced by post-irradiation annealing of neutron-irradiated austenitic stainless steels , 2000 .

[54]  H. Zbib,et al.  The displacement, and strain–stress fields of a general circular Volterra dislocation loop , 2000 .

[55]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[56]  B. Burton,et al.  The coarsening and annihilation kinetics of dislocation loop , 1986 .

[57]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[58]  Donald R. Olander,et al.  Fundamental Aspects of Nuclear Reactor Fuel Elements , 1976 .

[59]  J. Lothe,et al.  Dislocation Climb Forces , 1967 .

[60]  F. Kroupa DISLOCATION DIPOLES AND DISLOCATION LOOPS , 1966 .

[61]  Morris Cohen,et al.  Self diffusion in iron , 1961 .