Granular computing as a basis of human–data interaction: a cognitive cities use case

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.

[1]  Gérard Ligozat,et al.  What Is a Qualitative Calculus? A General Framework , 2004, PRICAI.

[2]  Jerry M. Mendel,et al.  What Computing With Words Means to Me , 2010 .

[3]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[4]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[5]  Suryansu Ray,et al.  Fuzzy plane projective geometry , 1993 .

[6]  Hamed Haddadi,et al.  Human-Data Interaction: The Human Face of the Data-Driven Society , 2014, ArXiv.

[7]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[8]  Francesco Cafaro,et al.  Using embodied allegories to design gesture suites for human-data interaction , 2012, UbiComp.

[9]  Wenzhong Shi,et al.  Principles of Modeling Uncertainties in Spatial Data and Spatial Analyses , 2009 .

[10]  Vladik Kreinovich,et al.  Interval Computations as an Important Part of Granular Computing: An Introduction , 2007 .

[11]  Hamed Haddadi,et al.  Human-Data Interaction , 2016 .

[12]  Lotfi A. Zadeh,et al.  Fuzzy logic and the calculus of fuzzy if-then rules , 1992, [1992] Proceedings The Twenty-Second International Symposium on Multiple-Valued Logic.

[13]  Yiyu Yao,et al.  A Partition Model of Granular Computing , 2004, Trans. Rough Sets.

[14]  Andy Crabtree,et al.  Human Data Interaction: Historical Lessons from Social Studies and CSCW , 2015, ECSCW.

[15]  J. J. Buckley,et al.  Fuzzy plane geometry II: Circles and polygons , 1997, Fuzzy Sets Syst..

[16]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[17]  Edy Portmann The FORA Framework - A Fuzzy Grassroots Ontology for Online Reputation Management , 2012 .

[18]  Wenzhong Shi,et al.  A stochastic process-based model for the positional error of line segments in GIS , 2000, Int. J. Geogr. Inf. Sci..

[19]  Terrence L. Fine Review: Glenn Shafer, A mathematical theory of evidence , 1977 .

[20]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[21]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[22]  Azriel Rosenfeld,et al.  Fuzzy plane geometry: triangles , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[23]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[24]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[25]  J. J. Buckley,et al.  Fuzzy plane geometry I: Points and lines , 1997, Fuzzy Sets Syst..

[26]  Jerry M. Mendel,et al.  What Computing with Words Means to Me [Discussion Forum] , 2010, IEEE Computational Intelligence Magazine.

[27]  Jerry R. Hobbs,et al.  Granularity in Natural Language Discourse , 2011, IWCS.

[28]  Janusz Kacprzyk,et al.  Computational Intelligence and Soft Computing: Closely Related but Not the Same , 2015, Accuracy and Fuzziness.

[29]  Edy Portmann,et al.  Towards Cognitive Cities : Advances in Cognitive Computing and its Application to the Governance of Large Urban Systems , 2016 .

[30]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[31]  Edy Portmann,et al.  A distributed, semiotic-inductive, and human-oriented approach to web-scale knowledge retrieval , 2012, Web-KR '12.

[32]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[33]  Edy Portmann,et al.  What Are Cognitive Cities , 2016 .

[34]  Andrew U. Frank,et al.  Tolerance geometry: Euclid's first postulate for points and lines with extension , 2010, GIS '10.

[35]  Andrzej Bargiela,et al.  Toward a Theory of Granular Computing for Human-Centered Information Processing , 2008, IEEE Transactions on Fuzzy Systems.

[36]  Derek McAuley,et al.  The Dataware manifesto , 2011, 2011 Third International Conference on Communication Systems and Networks (COMSNETS 2011).

[37]  L. Zadeh Toward a Perception-Based Theory of Probabilistic Reasoning , 2000, Rough Sets and Current Trends in Computing.

[38]  Wenzhong Shi,et al.  Modelling error propagation in vector-based buffer analysis , 2003, Int. J. Geogr. Inf. Sci..

[39]  Ildar Batyrshin,et al.  Perception-based Data Mining and Decision Making in Economics and Finance , 2007, Studies in Computational Intelligence.

[40]  Edy Portmann,et al.  Biomimetics in Design Oriented Information Systems Research , 2015 .

[41]  Tim Finin,et al.  Research Challenges and Opportunities in Knowledge Representation , 2013 .

[42]  G. Lakoff,et al.  Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .

[43]  Witold Pedrycz,et al.  Granular Computing: An Overview , 2004, WSC.

[44]  T. Peucker A THEORY OF THE CARTOGRAPHIC LINE , 1975 .

[45]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[46]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[47]  Wenzhong Shi A Generic Statistical Approach for Modelling Error of Geometric Features in GIS , 1998, Int. J. Geogr. Inf. Sci..

[48]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[49]  L. Godo,et al.  Logical approaches to fuzzy similarity-based reasoning: an overview , 2008 .

[50]  John E. Kelly,et al.  Smart Machines: IBM's Watson and the Era of Cognitive Computing , 2013 .

[51]  J. C. R. Licklider,et al.  Man-Computer Symbiosis , 1960 .

[52]  Alessandro Acquisti,et al.  Information revelation and privacy in online social networks , 2005, WPES '05.

[53]  Witold Pedrycz,et al.  Shadowed sets: representing and processing fuzzy sets , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[54]  Balachander Krishnamurthy,et al.  On the leakage of personally identifiable information via online social networks , 2009, CCRV.