SPECTROSCOPIC CONFIRMATION OF THE RICH z = 1.80 GALAXY CLUSTER JKCS 041 USING THE WFC3 GRISM: ENVIRONMENTAL TRENDS IN THE AGES AND STRUCTURE OF QUIESCENT GALAXIES

We present Hubble Space Telescope imaging and grism spectroscopy of the distant galaxy cluster JKCS041. Our survey yields 98 redshifts whose precision is typically ~20 times better than photometric estimates. We confirm that JKCS041 is a rich cluster and derive a redshift z=1.80 via the identification of 19 member galaxies, of which 15 are quiescent. These members are spatially aligned with diffuse X-ray emission seen by Chandra. As JKCS041 is the most distant known cluster with such a large and spectroscopically-confirmed quiescent population, it provides an unique opportunity to study the effect of the environment on galaxy properties at early epochs. We construct composite spectra of the quiescent members that clearly reveal Balmer and metallic absorption lines. From these, we infer that the more massive members (M_*>10^(11)M_☉) have a mean stellar age of 1.4^(+0.3)_(-0.2) Gyr, whereas lower-mass examples (M_*=10^(10.5-11)M_☉) have a younger mean age of 0.9^(+0.2)_(-0.1) Gyr. These ages agree closely with those inferred by Whitaker et al. for similarly-selected quiescent field galaxies, supporting the idea that the cluster environment is more efficient at truncating star formation while not having a strong effect on the mean epoch of quenching. In contrast to field samples, there is no sign of low-level Hβ or [O III] emission in our composite spectra. By comparing the ellipticity distribution of the quiescent members to coeval field galaxies drawn from the CANDELS survey, we find some evidence (90% confidence) for a lower fraction of disk-like quiescent systems in JKCS041. Taking this into account, we do not detect a significant difference between the mass-radius relations of the quiescent JKCS041 members and our z~1.8 field sample. We review claims of environmentally-dependent size growth of z>1 quiescent galaxies, and we demonstrate how differences in morphological mixtures may complicate comparisons of sizes in different environments.

[1]  Masayuki Tanaka,et al.  ON THE FORMATION TIMESCALE OF MASSIVE CLUSTER ELLIPTICALS BASED ON DEEP NEAR-INFRARED SPECTROSCOPY AT z ∼ 2 , 2013, 1306.4406.

[2]  L. Moustakas,et al.  THE ERA OF STAR FORMATION IN GALAXY CLUSTERS , 2013, 1310.6039.

[3]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[4]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[5]  M. D’Onofrio,et al.  SUPERDENSE GALAXIES AND THE MASS–SIZE RELATION AT LOW REDSHIFT , 2012, 1211.1005.

[6]  B. Hoyle,et al.  THE XMM CLUSTER SURVEY: ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES IN XMMXCS J2215.9−1738 AT z = 1.46 , 2010, 1005.4692.

[7]  T. Chiueh,et al.  ENVIRONMENTAL DEPENDENCE OF THE GALAXY MERGER RATE IN A ΛCDM UNIVERSE , 2012, 1205.1588.

[8]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[9]  R. Muñoz,et al.  Larger sizes of massive quiescent early-type galaxies in clusters than in the field at 0.8 < z < 1.5 , 2013, 1307.0003.

[10]  Hia,et al.  RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY , 2011, 1108.0656.

[11]  C. Conselice,et al.  Evidence for a correlation between the sizes of quiescent galaxies and local environment to z ∼ 2 , 2013, 1307.3247.

[12]  V. Vikram,et al.  NO EVIDENCE FOR A DEPENDENCE OF THE MASS–SIZE RELATION OF EARLY-TYPE GALAXIES ON ENVIRONMENT IN THE LOCAL UNIVERSE , 2012, 1212.4143.

[13]  Toru Yamada,et al.  MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog , 2010, 1012.2115.

[14]  H. Rix,et al.  SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1 , 2012, 1211.2113.

[15]  E. L. Wright,et al.  Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey , 2008, 0804.4798.

[16]  S. Andreon,et al.  Scaling relations of the colour-detected cluster RzCS 052 at z= 1.016 and some other high-redshift clusters , 2007, 0710.1023.

[17]  D. Stern,et al.  IDCS J1433.2+3306: AN INFRARED-SELECTED GALAXY CLUSTER AT z = 1.89 , 2012, 1207.4793.

[18]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[19]  H. Rottgering,et al.  On the X-ray emission of z ∼2 radio galaxies : IC scattering of the CMB and no evidence for fully-formed potential wells , 2004, astro-ph/0412026.

[20]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[21]  M. Nonino,et al.  FORMATION EPOCHS, STAR FORMATION HISTORIES, AND SIZES OF MASSIVE EARLY-TYPE GALAXIES IN CLUSTER AND FIELD ENVIRONMENTS AT z = 1.2: INSIGHTS FROM THE REST-FRAME ULTRAVIOLET , 2008, 0806.4604.

[22]  C. Breuck,et al.  A large-scale galaxy structure at z = 2.02 associated with the radio galaxy MRC 0156-252 , 2013, 1309.6645.

[23]  M. Postman,et al.  EARLY-TYPE GALAXIES AT z ∼ 1.3. IV. SCALING RELATIONS IN DIFFERENT ENVIRONMENTS , 2011, 1109.0284.

[24]  A. Leauthaud,et al.  Size and velocity-dispersion evolution of early-type galaxies in a Λ cold dark matter universe , 2012, 1202.0971.

[25]  D. Sijacki,et al.  HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion , 2010, 1011.3018.

[26]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[27]  P. McCarthy,et al.  HST/WFC3 NEAR-INFRARED SPECTROSCOPY OF QUENCHED GALAXIES AT z ∼ 1.5 FROM THE WISP SURVEY: STELLAR POPULATION PROPERTIES , 2013, 1309.3567.

[28]  Keck spectroscopy of distant GOODS spheroidal galaxies: Downsizing in a hierarchical Universe , 2005, astro-ph/0502028.

[29]  Anna Pasquali,et al.  The Slitless Spectroscopy Data Extraction Software aXe , 2008, 0812.1434.

[30]  M. Franx,et al.  THE EVOLVING RELATIONS BETWEEN SIZE, MASS, SURFACE DENSITY, AND STAR FORMATION IN 3 × 104 GALAXIES SINCE z = 2 , 2009, 0906.4786.

[31]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[32]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[33]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[34]  L. Ho,et al.  Detailed structural decomposition of galaxy images , 2002, astro-ph/0204182.

[35]  O. Fèvre,et al.  The evolution of the mass-size relation for early type galaxies from z 1 to the present: dependence on environment, mass-range and detailed morphology , 2012, 1207.5793.

[36]  J. Dunlop,et al.  REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62 , 2010, 1005.5126.

[37]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[38]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[39]  S. Andreon,et al.  GALAXY CLUSTERS AT z ⩾ 1: GAS CONSTRAINTS FROM THE SUNYAEV–ZEL'DOVICH ARRAY , 2010, 1007.2853.

[40]  S. E. Persson,et al.  FIRST RESULTS FROM Z −FOURGE: DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS , 2011, 1112.2691.

[41]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[42]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[43]  S. Bamford,et al.  THE ENVIRONMENTS OF STARBURST AND POST-STARBURST GALAXIES AT z = 0.4–0.8 , 2008, 0811.0252.

[44]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[45]  F. Marulli,et al.  Size evolution of spheroids in a hierarchical Universe , 2011, 1105.6043.

[46]  M. Nonino,et al.  Star formation histories of early-type galaxies at z = 1.2 in cluster and field environments , 2008, 0806.4537.

[47]  P. Jablonka,et al.  DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS , 2010, 1010.5164.

[48]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[49]  C. Marmo,et al.  The WIRCam Deep Survey I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields , 2011, 1111.6997.

[50]  H. Hoekstra,et al.  DISCOVERY OF A RICH CLUSTER AT z = 1.63 USING THE REST-FRAME 1.6 μm “STELLAR BUMP SEQUENCE” METHOD , 2013, 1301.5905.

[51]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[52]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[53]  U. Cambridge,et al.  The accretion of galaxies into groups and clusters , 2009, 0908.0750.

[54]  H. Rix,et al.  QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z ∼ 2 , 2013, 1305.1943.

[55]  A. Bolton,et al.  CAN DRY MERGING EXPLAIN THE SIZE EVOLUTION OF EARLY-TYPE GALAXIES? , 2009, 0910.2731.

[56]  R. Abraham,et al.  THE ENVIRONMENTAL DEPENDENCE OF THE LUMINOSITY–SIZE RELATION FOR GALAXIES , 2010, 1004.1107.

[57]  L. Danese,et al.  The Dramatic Size Evolution of Elliptical Galaxies and the Quasar Feedback , 2008, 0809.4574.

[58]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[59]  M. Boylan-Kolchin,et al.  The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations , 2010, 1001.2304.

[60]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[61]  T. Treu,et al.  A Wide-Field Survey of Two z ~ 0.5 Galaxy Clusters: Identifying the Physical Processes Responsible for the Observed Transformation of Spirals into S0s , 2007, 0707.4173.

[62]  G. Zamorani,et al.  zCOSMOS 10k-bright spectroscopic sample: Exploring mass and environment dependence in early-type galaxies , 2010, 1009.3376.

[63]  G. Brammer,et al.  A LARGE POPULATION OF MASSIVE COMPACT POST-STARBURST GALAXIES AT z > 1: IMPLICATIONS FOR THE SIZE EVOLUTION AND QUENCHING MECHANISM OF QUIESCENT GALAXIES , 2011, 1112.0313.

[64]  Yicheng Guo,et al.  Ongoing assembly of massive galaxies by major merging in large groups and clusters from the SDSS , 2007, 0710.2157.

[65]  S. Wuyts,et al.  FIREWORKS U38-to-24 μm Photometry of the GOODS Chandra Deep Field-South: Multiwavelength Catalog and Total Infrared Properties of Distant Ks-selected Galaxies , 2008 .

[66]  Robert C. Kennicutt,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[67]  P. Dokkum,et al.  A NEAR-INFRARED SPECTROSCOPIC SURVEY OF K-SELECTED GALAXIES AT z∼ 2.3: COMPARISON OF STELLAR POPULATION SYNTHESIS CODES AND CONSTRAINTS FROM THE REST-FRAME NIR , 2009, 0906.2012.

[68]  B. Weiner,et al.  The evolution of dust-obscured star formation activity in galaxy clusters relative to the field over the last 9 billion years , 2013, 1310.6040.

[69]  G. Kauffmann,et al.  Environmental effects on satellite galaxies: the link between concentration, size and colour profile , 2008, 0809.2283.

[70]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[71]  Ignacio Trujillo,et al.  Early type galaxies have been the predominant morphological class for massive galaxies since only z~1 , 2011, 1111.6993.

[72]  J. Carlstrom,et al.  Scaling Relations from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2007, 0708.0815.

[73]  Cea,et al.  RED NUGGETS AT z ∼ 1.5: COMPACT PASSIVE GALAXIES AND THE FORMATION OF THE KORMENDY RELATION , 2008, 0807.1744.

[74]  Yicheng Guo,et al.  Structural Properties of Central Galaxies in Groups and Clusters , 2009, 0901.1150.

[75]  Kansas,et al.  CANDELS OBSERVATIONS OF THE STRUCTURAL PROPERTIES OF CLUSTER GALAXIES AT z = 1.62 , 2011, 1110.3794.

[76]  L. Moustakas,et al.  APJ LETTERS, IN PRESS Preprint typeset using LATEX style emulateapj v. 5/14/03 GALAXY CLUSTER CORRELATION FUNCTION TO Z ∼ 1.5 IN THE IRAC SHALLOW CLUSTER SURVEY , 2022 .

[77]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[78]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[79]  J. E. Carlstrom,et al.  IDCS J1426.5+3508: SUNYAEV–ZEL’DOVICH MEASUREMENT OF A MASSIVE INFRARED-SELECTED CLUSTER AT z = 1.75 , 2012, 1205.3787.

[80]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[81]  A. Cimatti,et al.  A mature cluster with X-ray emission at z = 2.07 , 2010, 1011.1837.

[82]  P. Hall,et al.  A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC) , 2009, 0903.3051.

[83]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[84]  The extreme synchronicity of stellar ages of red galaxies in the JKCS 041 cluster at z = 2.2 , 2011, 1103.4249.

[85]  Jr.,et al.  Studying the Star Formation Histories of Galaxies in Clusters from Composite Spectra , 2004, astro-ph/0408490.

[86]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[87]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[88]  Evolution since z = 1 of the Morphology-Density Relation for Galaxies , 2004, astro-ph/0403455.

[89]  Arizona,et al.  CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62 , 2011, 1110.3821.

[90]  A. Cimatti,et al.  GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z ∼ 2 , 2013, 1305.3577.

[91]  Princeton University.,et al.  The shapes of galaxies in the Sloan Digital Sky Survey , 2008, 0802.0877.

[92]  Marijn Franx,et al.  THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS , 2011, 1106.6054.

[93]  R. Nichol,et al.  The Luminosities, Sizes, and Velocity Dispersions of Brightest Cluster Galaxies: Implications for Formation History , 2006, astro-ph/0607117.

[94]  H. Rix,et al.  STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS , 2013, 1305.6931.

[95]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[96]  I. Paris,et al.  Near-infrared spectroscopy of post-starburst galaxies: a limited impact of TP-AGB stars on galaxy spectral energy distributions , 2012, 1205.4717.

[97]  Masayuki Tanaka,et al.  INTERNAL STRUCTURE OF PROTOCLUSTER GALAXIES: ACCELERATED STRUCTURAL EVOLUTION IN OVERDENSE ENVIRONMENTS? , 2011, 1110.0327.

[98]  A. Finoguenov,et al.  An X-ray detected group of quiescent early-type galaxies at z = 1.6 in the Chandra Deep Field South , 2012, 1210.0302.

[99]  Claudia Scarlata,et al.  WFC3 GRISM CONFIRMATION OF THE DISTANT CLUSTER Cl J1449+0856 AT 〈z〉 = 2.00: QUIESCENT AND STAR-FORMING GALAXY POPULATIONS , 2013, 1305.3576.

[100]  CANDELS Observations Of The Environmental Dependence Of The Color-Mass-Morphology Relation At Z=1.6 , 2013, 1305.0607.

[101]  M. Postman,et al.  EARLY-TYPE GALAXIES AT z ∼ 1.3. II. MASSES AND AGES OF EARLY-TYPE GALAXIES IN DIFFERENT ENVIRONMENTS AND THEIR DEPENDENCE ON STELLAR POPULATION MODEL ASSUMPTIONS , 2011, 1103.0259.

[102]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[103]  M. Bernardi,et al.  COSMIC EVOLUTION OF SIZE AND VELOCITY DISPERSION FOR EARLY-TYPE GALAXIES , 2010, 1006.2303.

[104]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[105]  G. Illingworth,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF POST-STARBURST GALAXIES IN THE NEWFIRM MEDIUM-BAND SURVEY: A LOW CONTRIBUTION FROM TP-AGB STARS , 2010, 1008.4357.

[106]  J. Dunlop,et al.  A SPITZER-SELECTED GALAXY CLUSTER AT z = 1.62 , 2010, 1002.3158.

[107]  Y. Mellier,et al.  The WIRCAM deep infrared cluster survey - I. Groups and clusters at z ≳ 1.1 , 2010, 1007.5236.

[108]  G. Fasano,et al.  SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS , 2009, 0907.2392.

[109]  M. Brodwin,et al.  IDCS J1426.5+3508: DISCOVERY OF A MASSIVE, INFRARED-SELECTED GALAXY CLUSTER AT z = 1.75 , 2012, 1205.3786.

[110]  C. Conselice,et al.  INSIGHTS ON THE FORMATION, EVOLUTION, AND ACTIVITY OF MASSIVE GALAXIES FROM ULTRACOMPACT AND DISKY GALAXIES AT z = 2–3 , 2011, 1107.2591.

[111]  S. Wuyts,et al.  THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5 , 2009, 0909.0750.

[112]  Yoshihiro Ueda,et al.  A SPECTROSCOPICALLY CONFIRMED X-RAY CLUSTER AT z = 1.62 WITH A POSSIBLE COMPANION IN THE SUBARU/XMM-NEWTON DEEP FIELD , 2010, 1004.3606.

[113]  S. Andreon,et al.  Red sequence determination of the redshift of the cluster of galaxies JKCS 041: z ∼ 2.2 , 2010, 1012.1951.

[114]  Garth D. Illingworth,et al.  CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE’S WIDE FIELD CAMERA 3 , 2010, 1004.1411.

[115]  T. Lauer,et al.  Compact high-redshift galaxies are the cores of the most massive present-day spheroids , 2009, 0903.2479.

[116]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[117]  M. Cirasuolo,et al.  The Morphologies of Massive Galaxies at 1, 2012, Proceedings of the International Astronomical Union.

[118]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[119]  A. Dressler,et al.  THE IMACS CLUSTER BUILDING SURVEY. II. SPECTRAL EVOLUTION OF GALAXIES IN THE EPOCH OF CLUSTER ASSEMBLY , 2013, 1303.4272.

[120]  D. Kelson,et al.  THE CARNEGIE–SPITZER–IMACS REDSHIFT SURVEY OF GALAXY EVOLUTION SINCE z = 1.5. I. DESCRIPTION AND METHODOLOGY , 2012, 1201.0783.

[121]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[122]  N. Clerc,et al.  A Chandra view of the z=1.62 galaxy cluster IRC-0218A , 2011, 1109.6194.

[123]  E. McGrath,et al.  Morphologies of Two Massive Old Galaxies at z ~ 2.5 , 2007, 0710.0426.

[124]  G. Illingworth,et al.  THE HUBBLE SEQUENCE BEYOND z = 2 FOR MASSIVE GALAXIES: CONTRASTING LARGE STAR-FORMING AND COMPACT QUIESCENT GALAXIES , 2009, 0909.0260.

[125]  R. Ellis,et al.  CAN MINOR MERGING ACCOUNT FOR THE SIZE GROWTH OF QUIESCENT GALAXIES? NEW RESULTS FROM THE CANDELS SURVEY , 2011, 1110.1637.

[126]  J. Mohr,et al.  The X-ray luminous galaxy cluster XMMU J1007.4+1237 at z=1.56 - The dawn of starburst activity in cluster cores , 2011, 1101.3313.

[127]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[128]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[129]  G. Graves,et al.  EARLY-TYPE GALAXY ARCHEOLOGY: AGES, ABUNDANCE RATIOS, AND EFFECTIVE TEMPERATURES FROM FULL-SPECTRUM FITTING , 2013, 1303.6629.

[130]  S. J. Lilly,et al.  ENVIRONMENTAL EFFECTS IN THE INTERACTION AND MERGING OF GALAXIES IN zCOSMOS , 2013 .

[131]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[132]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[133]  The Star Formation Epoch of the Most Massive Early-Type Galaxies , 2006, astro-ph/0609587.

[134]  E. McGrath,et al.  Morphologies and Color Gradients of Luminous Evolved Galaxies at z ~ 1.5 , 2007, 0707.1050.

[135]  Puragra Guhathakurta,et al.  WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY , 2010, 1001.4560.

[136]  S. Andreon,et al.  Galaxy mass, cluster-centric distance and secular evolution: their role in the evolution of galaxies in clusters in the last 10 Gyr , 2012, 1205.4021.

[137]  S. Andreon,et al.  JKCS 041: a colour-detected galaxy cluster at zphot ~ 1.9 with deep potential well as confirmed by X-ray data , 2008, 0812.1699.

[138]  T. Tal,et al.  THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH , 2009, 0903.2044.

[139]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[140]  A. Henry,et al.  THE WFC3 INFRARED SPECTROSCOPIC PARALLEL (WISP) SURVEY , 2010, 1005.4068.