Land surface hydrology in a General Circulation Model N-global and regional fields needed for validation

Treatments of land surface processes in General Circulation Models are presently limited by the realism of the simulations of precipitation and surface radiation. We explore this thesis by examination of some of the climatological fields of a 6-year model simulation, using the Community Climate Model version 1 of the National Center for Atmospheric Research with addition of a diurnal cycle and coupled to a detailed treatment of land surface processes referred to as the Biosphere-Atmosphere Transfer Scheme. We examine July climatological surface fields over North America and note an excess of surface solar radiation over Eastern United States. Comparison with satellite derived cloud forcing suggests that the model underestimates the reduction of solar radiation by clouds over Eastern United States and in high latitudes, and so probably largely explaining the excess surface radiation. We consider the annual cycle of model hydrological fields (soil moisture, runoff, precipitation, evapotranspiration, net radiation) averaged over a box covering the central part of the United States (roughtly the Mississippi basin). The seasonal cycle of evapotranspiration over this box appears to be dominated by the variation of surface solar radiation and less related to that of precipitation.