Some q-analogues of the Carter-Payne theorem

Abstract We prove a q-analogue of the Carter-Payne theorem for the two special cases corresponding to moving an arbitrary number of nodes between adjacent rows, or moving one node between an arbitrary number of rows. As a consequence, we show that these homomorphism spaces are one dimensional when q ≠ −1. We apply these results to complete the classification of the reducible Specht modules for the Hecke algebras of the symmetric groups when q ≠ −1. Our methods can also be used to determine certain other pairs of Specht modules between which there is a homomorphism. In particular, we describe the homomorphism space for an arbitrary partition μ.

[1]  A. Mathas,et al.  Row and Column Removal Theorems for Homomorphisms of Specht Modules and Weyl Modules , 2005 .

[2]  A. Parker,et al.  Homomorphisms and Higher Extensions for Schur algebras and symmetric groups , 2005, math/0508521.

[3]  M. Fayers Irreducible Specht modules for Hecke algebras of type A , 2005 .

[4]  M. Fayers Reducible Specht modules , 2004 .

[5]  M. Fayers,et al.  Homomorphisms between Specht modules , 2004 .

[6]  S. Lyle Some reducible Specht modules , 2003 .

[7]  M. Künzer A one-box-shift morphism between Specht modules , 2000 .

[8]  K. Erdmann,et al.  On Ext2 between Weyl modules for quantum GLn , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Andrew Mathas,et al.  Hecke algebras and Schur algebras of the symmetric group , 1999 .

[10]  G. James,et al.  The Irreducible Specht Modules in Characteristic 2 , 1999 .

[11]  Alain Lascoux,et al.  Hecke algebras at roots of unity and crystal bases of quantum affine algebras , 1996 .

[12]  G. James,et al.  Representations of general linear groups , 1984 .

[13]  R. Carter,et al.  On homomorphisms between Weyl modules and Specht modules , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  G. James On a conjecture of Carter concerning irreducible Specht modules , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  S. Donkin Handbook of Tilting Theory: Tilting modules for algebraic groups and finite dimensional algebras , 2007 .

[16]  Gordon James,et al.  Rouquier blocks , 2005 .

[17]  J. Brundan,et al.  REPRESENTATION THEORY OF SYMMETRIC GROUPS AND THEIR DOUBLE COVERS , 2002 .

[18]  S. Ariki On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$ , 1996 .

[19]  G. James,et al.  $q$-tensor space and $q$-Weyl modules , 1991 .

[20]  Gordon James,et al.  Representations of Hecke Algebras of General Linear Groups , 1986 .

[21]  Gordon James,et al.  The Representation Theory of the Symmetric Groups , 1977 .