The Retromer Complex and Sorting Nexins in Neurodegenerative Diseases

The retromer complex and associated sorting nexins (SNXs) comprise a critical trafficking machinery which mediates endosomal protein sorting. Retromer and/or SNX dysfunction has been linked to several neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and Down’s syndrome (DS). In AD, deficiency of the retromer complex or its cargo proteins impairs endosomal trafficking of amyloid precursor protein (APP), resulting in the overproduction of β-amyloid (Aβ). Several SNX components directly interact with APP or APP-cleaving enzymes (β- and γ-secretases) to regulate amyloidogenic APP processing and Aβ generation. In addition, PD-linked mutations in retromer components cause mistrafficking of retromer cargo proteins and mitochondrial dysfunction, and dysregulation retromer-mediated trafficking has been considered as an important cause of hereditary spastic paraplegia (HSP) and neuronal ceroid lipofuscinoses (NCLs). Moreover, SNX27 deficiency is an important contributor for synaptic and cognitive impairment in DS. Here we review recent findings describing the retromer complex and/or SNXs-mediated endosomal sorting in neurodegenerative disorders.

[1]  T. Postmus Genetics of Parkinson's disease , 2018 .

[2]  Maity Gouranga,et al.  COMPREHENSIVE STUDY OF , 2018 .

[3]  L. Brodin,et al.  Overexpression of SNX7 reduces Aβ production by enhancing lysosomal degradation of APP. , 2018, Biochemical and biophysical research communications.

[4]  Wenzhang Wang,et al.  Parkinson's disease-associated pathogenic VPS35 mutation causes complex I deficits. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[5]  G. Petsko,et al.  Endosomal Traffic Jams Represent a Pathogenic Hub and Therapeutic Target in Alzheimer’s Disease , 2017, Trends in Neurosciences.

[6]  R. Sessions,et al.  Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling , 2017, Nature Cell Biology.

[7]  N. Tanaka,et al.  Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A , 2017, Molecular Neurodegeneration.

[8]  J. Gilleron,et al.  Essential and selective role of SNX12 in transport of endocytic and retrograde cargo , 2017, Journal of Cell Science.

[9]  J. Lippincott-Schwartz,et al.  Defects in ER–endosome contacts impact lysosome function in hereditary spastic paraplegia , 2017, The Journal of cell biology.

[10]  G. Dittmar,et al.  Quantitative proteomic analysis of Parkin substrates in Drosophila neurons , 2017, Molecular Neurodegeneration.

[11]  R. Malenka,et al.  The Retromer Supports AMPA Receptor Trafficking During LTP , 2017, Neuron.

[12]  B. Su,et al.  Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases , 2017, Antioxidants.

[13]  D. Praticò,et al.  The retromer complex system in a transgenic mouse model of AD: influence of age , 2017, Neurobiology of Aging.

[14]  Na-Young Kim,et al.  Sorting nexin-4 regulates β-amyloid production by modulating β-site-activating cleavage enzyme-1 , 2017, Alzheimer's Research & Therapy.

[15]  B. Diedrich,et al.  Retromer- and WASH-dependent sorting of nutrient transporters requires a multivalent interaction network with ANKRD50 , 2017, Journal of Cell Science.

[16]  A. Oliveira,et al.  Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks , 2016, The Cerebellum.

[17]  M. Cookson,et al.  LRRK2 at the interface of autophagosomes, endosomes and lysosomes , 2016, Molecular Neurodegeneration.

[18]  Zengqiang Yuan,et al.  Vps35‐dependent recycling of Trem2 regulates microglial function , 2016, Traffic.

[19]  Yuko Fujita,et al.  Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. , 2016, Human molecular genetics.

[20]  Huaxi Xu,et al.  VPS35 regulates cell surface recycling and signaling of dopamine receptor D1 , 2016, Neurobiology of Aging.

[21]  T. Willnow,et al.  Risk factor SORL1: from genetic association to functional validation in Alzheimer’s disease , 2016, Acta Neuropathologica.

[22]  M. Passafaro,et al.  SNX27, a protein involved in down syndrome, regulates GPR17 trafficking and oligodendrocyte differentiation , 2016, Glia.

[23]  Huaxi Xu,et al.  SNX27 and SORLA Interact to Reduce Amyloidogenic Subcellular Distribution and Processing of Amyloid Precursor Protein , 2016, The Journal of Neuroscience.

[24]  R. Teasdale,et al.  Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation* , 2016, The Journal of Biological Chemistry.

[25]  R. Redon,et al.  SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease , 2016, Molecular Psychiatry.

[26]  Giuliano Binetti,et al.  A comprehensive study of the genetic impact of rare variants in SORL1 in European early-onset Alzheimer’s disease , 2016, Acta Neuropathologica.

[27]  A. Peters,et al.  Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination , 2016, Neuron.

[28]  Wenzhang Wang,et al.  Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes , 2015, Nature Medicine.

[29]  Huaxi Xu,et al.  SNX15 Regulates Cell Surface Recycling of APP and Aβ Generation , 2016, Molecular Neurobiology.

[30]  L. Mei,et al.  VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. , 2015, Cell reports.

[31]  A. Whitworth,et al.  VPS35 pathogenic mutations confer no dominant toxicity but partial loss of function in Drosophila and genetically interact with parkin , 2015, Human molecular genetics.

[32]  L. Mei,et al.  VPS35 in Dopamine Neurons Is Required for Endosome-to-Golgi Retrieval of Lamp2a, a Receptor of Chaperone-Mediated Autophagy That Is Critical for α-Synuclein Degradation and Prevention of Pathogenesis of Parkinson's Disease , 2015, The Journal of Neuroscience.

[33]  D. Campion,et al.  De novo deleterious genetic variations target a biological network centered on Aβ peptide in early-onset Alzheimer disease , 2015, Molecular Psychiatry.

[34]  G. Petsko,et al.  Retromer in Alzheimer disease, Parkinson disease and other neurological disorders , 2015, Nature Reviews Neuroscience.

[35]  Yufeng Shen,et al.  Coding mutations in SORL1 and Alzheimer disease , 2015, Annals of neurology.

[36]  E. Masliah,et al.  Parkinson’s Disease Genes VPS35 and EIF4G1 Interact Genetically and Converge on α-Synuclein , 2023, Neuron.

[37]  G. Petsko,et al.  The Use of Pharmacological Retromer Chaperones in Alzheimer’s Disease and other Endosomal-related Disorders , 2014, Neurotherapeutics.

[38]  S. Lipton,et al.  Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease , 2014, Molecular Neurodegeneration.

[39]  Huaxi Xu,et al.  Sorting nexin 27 regulates Aβ production through modulating γ-secretase activity. , 2014, Cell reports.

[40]  A. Takeda,et al.  VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease , 2014, Neurobiology of Disease.

[41]  F. Santorelli,et al.  Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms , 2014, Experimental Neurology.

[42]  A. Goate,et al.  Coding variants in TREM2 increase risk for Alzheimer's disease. , 2014, Human molecular genetics.

[43]  Yi Zhao,et al.  In vivo evidence of pathogenicity of VPS35 mutations in the Drosophila , 2014, Molecular Brain.

[44]  J. Molinuevo,et al.  TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis , 2014, Science Translational Medicine.

[45]  P. Cullen,et al.  Retromer Binding to FAM21 and the WASH Complex Is Perturbed by the Parkinson Disease-Linked VPS35(D620N) Mutation , 2014, Current Biology.

[46]  K. Venderová,et al.  Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson’s disease mutant of Leucine-rich repeat kinase 2 (LRRK2) , 2014, Molecular Neurodegeneration.

[47]  G. Petsko,et al.  Pharmacological chaperones stabilize retromer to limit APP processing. , 2014, Nature chemical biology.

[48]  L. M. Stevers,et al.  Rapid Mapping of Interactions between Human SNX-BAR Proteins Measured In Vitro by AlphaScreen and Single-molecule Spectroscopy * , 2014, Molecular & Cellular Proteomics.

[49]  D. Rubinsztein,et al.  Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy , 2014, Nature Communications.

[50]  Aris Fiser,et al.  Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration , 2014, Human molecular genetics.

[51]  R. Teasdale,et al.  The Vps35 D620N Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer , 2014, Traffic.

[52]  Huaxi Xu,et al.  Trafficking regulation of proteins in Alzheimer’s disease , 2014, Molecular Neurodegeneration.

[53]  A. Gautreau,et al.  Retromer-mediated endosomal protein sorting: all WASHed up! , 2013, Trends in cell biology.

[54]  E. Masliah,et al.  Microglial Beclin 1 Regulates Retromer Trafficking and Phagocytosis and Is Impaired in Alzheimer’s Disease , 2013, Neuron.

[55]  J. Tavaré,et al.  A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport , 2013, Nature Cell Biology.

[56]  S. Lipton,et al.  Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction via modulation of glutamate receptor recycling in Down syndrome , 2013, Nature Medicine.

[57]  K. Marder,et al.  RAB7L1 Interacts with LRRK2 to Modify Intraneuronal Protein Sorting and Parkinson’s Disease Risk , 2013, Neuron.

[58]  Huadong Liu,et al.  Structural basis for endosomal trafficking of diverse transmembrane cargos by PX-FERM proteins , 2013, Proceedings of the National Academy of Sciences.

[59]  Cao Huang,et al.  Pathogenic Mutation in VPS35 Impairs Its Protection against MPP+ Cytotoxicity , 2013, International journal of biological sciences.

[60]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[61]  A. Hofman,et al.  Variant of TREM2 associated with the risk of Alzheimer's disease. , 2013, The New England journal of medicine.

[62]  E. Reid,et al.  The hereditary spastic paraplegia protein strumpellin: Characterisation in neurons and of the effect of disease mutations on WASH complex assembly and function , 2013, Biochimica et biophysica acta.

[63]  N. Narayanan,et al.  Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease , 2013, Reviews in the neurosciences.

[64]  E. Katunina,et al.  [Epidemiology of Parkinson's disease]. , 2013, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.

[65]  D. Chan Fusion and fission: interlinked processes critical for mitochondrial health. , 2012, Annual review of genetics.

[66]  J. Hurley,et al.  Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules , 2012, The EMBO journal.

[67]  M. Krams,et al.  Down's syndrome and Alzheimer's disease: towards secondary prevention , 2012, Nature Reviews Drug Discovery.

[68]  S. Small,et al.  The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport , 2012, Neurobiology of Disease.

[69]  Yun-wu Zhang,et al.  Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing , 2012, Molecular Neurodegeneration.

[70]  R. Parton,et al.  SNX12 Role in Endosome Membrane Transport , 2012, PloS one.

[71]  J. Massano,et al.  Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. , 2012, Cold Spring Harbor perspectives in medicine.

[72]  S. Costantino,et al.  The Role of Ceroid Lipofuscinosis Neuronal Protein 5 (CLN5) in Endosomal Sorting , 2012, Molecular and Cellular Biology.

[73]  J. Nyengaard,et al.  Retromer Binds the FANSHY Sorting Motif in SorLA to Regulate Amyloid Precursor Protein Sorting and Processing , 2012, The Journal of Neuroscience.

[74]  Kristopher L. Nazor,et al.  Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells , 2012, Nature.

[75]  L. Mei,et al.  VPS35 haploinsufficiency increases Alzheimer’s disease neuropathology , 2011, The Journal of cell biology.

[76]  Marc N. Offman,et al.  A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. , 2011, American journal of human genetics.

[77]  M. Farrer,et al.  VPS35 mutations in Parkinson disease. , 2011, American journal of human genetics.

[78]  Hui Zheng,et al.  Biology and pathophysiology of the amyloid precursor protein , 2011, Molecular Neurodegeneration.

[79]  Benjamin E. L. Lauffer,et al.  SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signaling receptors , 2011, Nature Cell Biology.

[80]  P. Blain,et al.  Mitochondrial Dysfunction in Parkinson's Disease , 2011, Parkinson's disease.

[81]  C. Blackstone,et al.  Hereditary spastic paraplegias: membrane traffic and the motor pathway , 2011, Nature Reviews Neuroscience.

[82]  M. Seaman,et al.  The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics , 2010, Journal of Cell Science.

[83]  Benjamin E. L. Lauffer,et al.  SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane , 2010, The Journal of cell biology.

[84]  Wenzhu Zhang,et al.  Proteomic identification of sorting nexin 6 as a negative regulator of BACE1‐mediated APP processing , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  D. Billadeau,et al.  A FAM21-containing WASH complex regulates retromer-dependent sorting. , 2009, Developmental cell.

[86]  P. Camilli,et al.  The BAR Domain Superfamily: Membrane-Molding Macromolecules , 2009, Cell.

[87]  A. Brice,et al.  Parkinson's disease: from monogenic forms to genetic susceptibility factors. , 2009, Human molecular genetics.

[88]  A. Jalanko,et al.  Neuronal ceroid lipofuscinoses. , 2009, Biochimica et biophysica acta.

[89]  Leonard Petrucelli,et al.  The role of tau in neurodegeneration , 2009, Molecular Neurodegeneration.

[90]  A. Paetau,et al.  Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo , 2009, Molecular Brain.

[91]  A. Levey,et al.  Loss of LR11/SORLA Enhances Early Pathology in a Mouse Model of Amyloidosis: Evidence for a Proximal Role in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[92]  S. Yen,et al.  Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. , 2008, Biochemistry.

[93]  D. Edwards,et al.  The ADAM metalloproteinases , 2008, Molecular Aspects of Medicine.

[94]  S. Weggen,et al.  LRP1 modulates APP trafficking along early compartments of the secretory pathway , 2008, Neurobiology of Disease.

[95]  P. Cullen Endosomal sorting and signalling: an emerging role for sorting nexins , 2008, Nature Reviews Molecular Cell Biology.

[96]  E. Kremmer,et al.  A Novel Sorting Nexin Modulates Endocytic Trafficking and α-Secretase Cleavage of the Amyloid Precursor Protein* , 2008, Journal of Biological Chemistry.

[97]  L. Honig,et al.  Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Aβ accumulation , 2008, Proceedings of the National Academy of Sciences.

[98]  Jiyeon Lee,et al.  Adaptor Protein Sorting Nexin 17 Regulates Amyloid Precursor Protein Trafficking and Processing in the Early Endosomes* , 2008, Journal of Biological Chemistry.

[99]  A. Holland,et al.  Gene expression profiling in the adult Down syndrome brain. , 2007, Genomics.

[100]  S. Leurgans,et al.  Neuronal LR11/sorLA expression is reduced in mild cognitive impairment , 2007, Annals of neurology.

[101]  K. Lunetta,et al.  The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease , 2007, Nature Genetics.

[102]  M. Zatz,et al.  Mutations in the KIAA0196 gene at the SPG8 locus cause hereditary spastic paraplegia. , 2007, American journal of human genetics.

[103]  J. Bonifacino,et al.  The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain , 2006, Nature Structural &Molecular Biology.

[104]  A. Levey,et al.  The Lipoprotein Receptor LR11 Regulates Amyloid β Production and Amyloid Precursor Protein Traffic in Endosomal Compartments , 2006, The Journal of Neuroscience.

[105]  L. Honig,et al.  Model‐guided microarray implicates the retromer complex in Alzheimer's disease , 2005, Annals of neurology.

[106]  V. Schmithorst,et al.  Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study , 2005, Human brain mapping.

[107]  B. Hyman,et al.  Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Wenyan Lu,et al.  Sorting nexin 17 facilitates LRP recycling in the early endosome , 2005, The EMBO journal.

[109]  M. Seaman,et al.  Recycle your receptors with retromer. , 2005, Trends in cell biology.

[110]  T. Klingberg,et al.  Maturation of White Matter is Associated with the Development of Cognitive Functions during Childhood , 2004, Journal of Cognitive Neuroscience.

[111]  A. Levey,et al.  Loss of apolipoprotein E receptor LR11 in Alzheimer disease. , 2004, Archives of neurology.

[112]  Sascha Weggen,et al.  FE65 Constitutes the Functional Link between the Low-Density Lipoprotein Receptor-Related Protein and the Amyloid Precursor Protein , 2004, The Journal of Neuroscience.

[113]  M. Seaman Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer , 2004, The Journal of cell biology.

[114]  T. Iwatsubo,et al.  The role of presenilin cofactors in the γ-secretase complex , 2003, Nature.

[115]  T. Iwatsubo,et al.  The role of presenilin cofactors in the gamma-secretase complex. , 2003, Nature.

[116]  Sascha Weggen,et al.  The cytoplasmic domain of the LDL receptor‐related protein regulates multiple steps in APP processing , 2002, The EMBO journal.

[117]  L. Peltonen,et al.  Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3. , 2002, Molecular biology of the cell.

[118]  L. Peltonen,et al.  Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. , 2002, Human molecular genetics.

[119]  C. van Broeckhoven,et al.  Endocytic disturbances distinguish among subtypes of alzheimer's disease and related disorders , 2001, Annals of neurology.

[120]  S. Mole Neuronal ceroid lipofuscinoses. , 1999, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[121]  J. Trojanowski,et al.  Neurodegenerative tauopathies. , 2001, Annual review of neuroscience.

[122]  Alan C. Evans,et al.  Structural maturation of neural pathways in children and adolescents: in vivo study. , 1999, Science.

[123]  D. Selkoe,et al.  The cell biology of β-amyloid precursor protein and presenilin in Alzheimer's disease , 1998 .

[124]  D. Selkoe The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. , 1998, Trends in cell biology.

[125]  M. L. Schmidt,et al.  α-Synuclein in Lewy bodies , 1997, Nature.

[126]  M G Spillantini,et al.  Alpha-synuclein in Lewy bodies. , 1997, Nature.

[127]  I. Choi,et al.  Hereditary spastic paraplegia. , 1983, Yonsei medical journal.