Nitrogen fixation: Anthropogenic enhancement‐environmental response

In the absence of human activities, biotic fixation is the primary source of reactive N, providing about 90–130 Tg N yr−1 (Tg = 1012 g) on the continents. Human activities have resulted in the fixation of an additional ≈140 Tg N yr−1 by energy production (≈20 Tg N yr−1 ), fertilizer production (≈80 Tg N yr−1), and cultivation of crops (e.g., legumes, rice) (≈40 Tg N yr−1 ). We can only account for part of this anthropogenic N. N2O is accumulating in the atmosphere at a rate of 3 Tg N yr−1. Coastal oceans receive another 41 Tg N yr−1 via rivers, much of which is buried or denitrified. Open oceans receive 18 Tg N yr−1 by atmospheric deposition, which is incorporated into oceanic N pools (e.g., NO3−, N2). The remaining 80 Tg N yr−1 are either retained on continents in groundwater, soils, or vegetation or denitrified to N2. Field studies and calculations indicate that uncertainties about the size of each sink can account for the remaining anthropogenic N. Thus although anthropogenic N is clearly accumulating on continents, we do not know rates of individual processes. We predict the anthropogenic N-fixation rate will increase by about 60% by the year 2020, primarily due to increased fertilizer use and fossil-fuel combustion. About two-thirds of the increase will occur in Asia, which by 2020 will account for over half of the global anthropogenic N fixation.

[1]  H. Levy,et al.  Empirical model of global soil‐biogenic NOχ emissions , 1995 .

[2]  S. Nixon Coastal marine eutrophication: A definition, social causes, and future concerns , 1995 .

[3]  J. Galloway,et al.  Sulfur and reactive nitrogen oxide fluxes in the North Atlantic atmosphere , 1994 .

[4]  E. Matthews Nitrogenous fertilizers: Global distribution of consumption and associated emissions of nitrous oxide and ammonia , 1994 .

[5]  Ann P. Kinzig,et al.  Human impacts on the nitrogen cycle , 1994 .

[6]  R. Ayres,et al.  Industrial Ecology and Global Change: Human Impacts on the Carbon and Nitrogen Cycles , 1994 .

[7]  P. Crutzen,et al.  A three-dimensional model of the global ammonia cycle , 1994 .

[8]  P. Vitousek Beyond Global Warming: Ecology and Global Change , 1994 .

[9]  Robert A. Goldstein,et al.  Modeling the Global Carbon Cycle: Nitrogen fertilization of the terrestrial biosphere and the “missing” CO2 sink , 1994 .

[10]  F. Mackenzie,et al.  Modeling pre-industrial C-N-P-S biogeochemical cycling in the land-coastal margin system , 1994 .

[11]  Hans W. Paerl,et al.  Isotopic characterization of atmospheric nitrogen inputs as sources of enhanced primary production in coastal Atlantic Ocean waters , 1994 .

[12]  P. Kasibhatla,et al.  Growth of Continental-Scale Metro-Agro-Plexes, Regional Ozone Pollution, and World Food Production , 1994, Science.

[13]  Kazuo Osada,et al.  New chemical stratigraphy over the last millennium for Byrd Station, Antarctica , 1994 .

[14]  J. D. Parrott,et al.  Shallow groundwater denitrification , 1994 .

[15]  R. K. Dixon,et al.  Carbon Pools and Flux of Global Forest Ecosystems , 1994, Science.

[16]  P. Kasibhatla,et al.  Year 2020: Consequences of population growth and development on deposition of oxidized nitrogen , 1994 .

[17]  D. Schindler,et al.  The biosphere as an increasing sink for atmospheric carbon: Estimates from increased nitrogen depostion , 1993 .

[18]  Roy F. Spalding,et al.  Occurrence of nitrate in groundwater-a review , 1993 .

[19]  A. Knap,et al.  Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms , 1993 .

[20]  Richard D. Boone,et al.  Plant and Soil Responses to Chronic Nitrogen Additions at the Harvard Forest, Massachusetts. , 1993, Ecological applications : a publication of the Ecological Society of America.

[21]  J. Aber,et al.  PLANT AND SOIL RESPONSES TO CHRONIC NITROGEN ADDITIONS AT THE HARVARD FOREST , 1993 .

[22]  W. Alley Regional ground-water quality , 1993 .

[23]  D. Walters,et al.  Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate , 1993 .

[24]  P. Laj,et al.  Changing sources of impurities to the Greenland ice sheet over the last 250 years , 1992 .

[25]  G. Shimmield Ocean Margin Processes in Global Change , 1992 .

[26]  S. Korom Natural denitrification in the saturated zone: a review , 1992 .

[27]  J. Galloway,et al.  Episodic atmospheric nitrogen deposition to oligotrophic oceans , 1992, Nature.

[28]  Pekka E. Kauppi,et al.  Biomass and Carbon Budget of European Forests, 1971 to 1990 , 1992, Science.

[29]  Michael Garstang,et al.  Saharan dust in the Amazon Basin , 1992 .

[30]  J. Dignon,et al.  Global Emissions of Nitrogen and Sulfur Oxides in Fossil Fuel Combustion 1970–1986 , 1992 .

[31]  William H. Schlesinger,et al.  A global budget for atmospheric NH3 , 1992 .

[32]  Dale W. Johnson Nitrogen Retention in Forest Soils , 1992 .

[33]  F. Berendse,et al.  Nitrogen mineralization in heathland ecosystems dominated by different plant species , 1992 .

[34]  J. Sarmiento,et al.  Revised budget for the oceanic uptake of anthropogenic carbon dioxide , 1992, Nature.

[35]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[36]  E. Carpenter,et al.  Major Role of the Cyanobacterium Trichodesmium in Nutrient Cycling in the North Atlantic Ocean , 1991, Science.

[37]  B. Hicks,et al.  The atmospheric input of trace species to the world ocean , 1991 .

[38]  R. Bobbink Effects of nutrient enrichment in dutch chalk grassland , 1991 .

[39]  R. E. Turner,et al.  Changes in Mississippi River Water Quality this CenturyImplications for coastal food webs , 1991 .

[40]  W. Schlesinger Biogeochemistry: An Analysis of Global Change , 1991 .

[41]  J. Levine The Global Impact of Biomass Burning on Tropospheric Reactive Nitrogen , 1991 .

[42]  Robert W. Howarth,et al.  Nitrogen limitation on land and in the sea: How can it occur? , 1991 .

[43]  A. Devol Direct measurement of nitrogen gas fluxes from continental shelf sediments , 1991, Nature.

[44]  N. Miller,et al.  Comparison of field, laboratory, and theoretical estimates of global nitrogen fixation by lightning , 1990 .

[45]  Harold A. Mooney,et al.  EFFECTS OF SOIL RESOURCES ON PLANT INVASION AND COMMUNITY STRUCTURE IN CALIFORNIAN SERPENTINE GRASSLAND , 1990 .

[46]  H. Levy,et al.  Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion , 1989 .

[47]  J. Aber,et al.  Nitrogen saturation in northern forest ecosystems , 1989 .

[48]  J. Dignon,et al.  GLOBAL EMISSIONS OF NITROGEN AND SULFUR OXIDES FROM 1860 TO 1980 , 1989 .

[49]  F. Mackenzie,et al.  Global Biogeochemical Cycles and Climate , 1989 .

[50]  D. Ronen,et al.  Contaminated aquifers are a forgotten component of the global N2O budget , 1988, Nature.

[51]  S. Seitzinger Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance , 1988 .

[52]  I. Isaksen,et al.  Tropospheric ozone : regional and global scale interactions , 1988 .

[53]  Ozone Measurements in Historic Perspective , 1988 .

[54]  P. Crutzen Tropospheric Ozone: An Overview , 1988 .

[55]  L. Codispoti,et al.  Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget , 1987 .

[56]  W. Sheldrick World Nitrogen Survey , 1987 .

[57]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[58]  E. Carpenter,et al.  Validity of N2 fixation rate measurements in marine Oscillatoria (Trichodesmium) , 1987 .

[59]  Michael Keller,et al.  Emissions of N2O, CH4 and CO2 from tropical forest soils , 1986 .

[60]  P. Mayewski,et al.  Sulfate and Nitrate Concentrations from a South Greenland Ice Core , 1986, Science.

[61]  S. Naqvi,et al.  Nutrient-uptake and regeneration ratios in the red-sea with reference to the nutrient budgets , 1986 .

[62]  J. Melillo,et al.  The potential storage of carbon caused by eutrophication of the biosphere , 1985 .

[63]  L. Codispoti,et al.  Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean , 1985 .

[64]  H. Paerl Enhancement of marine primary production by nitrogen-enriched acid rain , 1985, Nature.

[65]  Jennifer A. Logan,et al.  Nitrogen oxides in the troposphere: Global and regional budgets , 1983 .

[66]  S. Schwartz Trace Atmospheric Constituents: Properties, Transformations and Fates , 1983 .

[67]  E. Laws Chapter 13 – MAN'S IMPACT ON THE MARINE NITROGEN CYCLE , 1983 .

[68]  D. Capone Chapter 4 – BENTHIC NITROGEN FIXATION , 1983 .

[69]  E. Carpenter Chapter 3 – NITROGEN FIXATION BY MARINE OSCILLATORIA (TRICHODESMIUM) IN THE WORLD's OCEANS , 1983 .

[70]  D. Tilman Resource competition and community structure. , 1983, Monographs in population biology.

[71]  J. Cole,et al.  Sedimentation of biogenic matter in the deep ocean , 1982 .

[72]  M. Meybeck Carbon, nitrogen, and phosphorus transport by world rivers , 1982 .

[73]  R. Weiss The temporal and spatial distribution of tropospheric nitrous oxide , 1981 .

[74]  T. Patterson,et al.  How Much Nitrogen do Legumes Fix , 1981 .

[75]  R. A. Kempton,et al.  The Structure of Species Abundance and Measurement of Diversity , 1979 .

[76]  E. Odum,et al.  Community and Population Level Responses to Fertilization in an Old‐Field Ecosystem , 1978 .

[77]  R. Hardy,et al.  Nitrogen fixation in bacteria and higher plants. , 1975, Molecular biology, biochemistry, and biophysics.

[78]  R. Garrels,et al.  Chemical cycles and the global environment: Assessing human influences , 1975 .

[79]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[80]  S. Levin Community Equilibria and Stability, and an Extension of the Competitive Exclusion Principle , 1970, The American Naturalist.

[81]  S. Benedetti,et al.  Selection of Writings by Augusto Righi , 1951 .

[82]  Indiana Agric. Exp. Sta. Usa,et al.  Department of Botany. , 1922 .