Ericoid mycorrhizal fungi enhance salt tolerance in ericaceous plants

[1]  L. Tedersoo,et al.  Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes , 2019, Biological reviews of the Cambridge Philosophical Society.

[2]  S. Zimmermann,et al.  Ectomycorrhizal symbiosis helps plants to challenge salt stress conditions , 2019, Mycorrhiza.

[3]  T. Sa,et al.  Impact of Arbuscular Mycorrhizal Fungi on Photosynthesis, Water Status, and Gas Exchange of Plants Under Salt Stress–A Meta-Analysis , 2019, Front. Plant Sci..

[4]  J. Zwiazek,et al.  Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. , 2018, Plant science : an international journal of experimental plant biology.

[5]  E. Martino,et al.  Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? , 2018, The New phytologist.

[6]  P. Zuccarini Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation , 2018 .

[7]  B. Henrissat,et al.  Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. , 2018, The New phytologist.

[8]  B. Henrissat,et al.  Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum , 2016, Nature Communications.

[9]  Jianjun Chen,et al.  A New Oidiodendron maius Strain Isolated from Rhododendron fortunei and its Effects on Nitrogen Uptake and Plant Growth , 2016, Front. Microbiol..

[10]  R. Azcón,et al.  Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution , 2016, Mycorrhiza.

[11]  R. Aroca,et al.  Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. , 2015, Journal of plant physiology.

[12]  J. Zwiazek,et al.  Regulation of aquaporin-mediated water transport in Arabidopsis roots exposed to NaCl. , 2015, Plant & cell physiology.

[13]  J. Zwiazek,et al.  Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas , 2014, Mycorrhiza.

[14]  D. Sánchez-Gómez,et al.  Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. , 2013, Plant, cell & environment.

[15]  R. Aroca,et al.  Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. , 2012, Journal of experimental botany.

[16]  J. Zwiazek,et al.  Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding , 2012, BMC Plant Biology.

[17]  J. Zwiazek,et al.  Ectomycorrhizas and water relations of trees: a review , 2011, Mycorrhiza.

[18]  Christophe Maurel,et al.  Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions1[C][W] , 2011, Plant Physiology.

[19]  J. Zwiazek,et al.  Role of aquaporins in root water transport of ectomycorrhizal jack pine (Pinus banksiana) seedlings exposed to NaCl and fluoride. , 2010, Plant, cell & environment.

[20]  Heikham Evelin,et al.  Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. , 2009, Annals of botany.

[21]  Baowei Yang,et al.  Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress , 2008, Mycorrhiza.

[22]  M. Tester,et al.  Mechanisms of salinity tolerance. , 2008, Annual review of plant biology.

[23]  J. Zwiazek,et al.  Responses of ectomycorrhizal Populus tremuloides and Betula papyrifera seedlings to salinity , 2008 .

[24]  K. Kosola,et al.  Inoculation of cranberry (Vaccinium macrocarpon) with the ericoid mycorrhizal fungus Rhizoscyphus ericae increases nitrate influx. , 2007, The New phytologist.

[25]  M. Sharifi,et al.  Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. , 2007, Journal of plant physiology.

[26]  K. Mukerji,et al.  Improved Tolerance of Acacia nilotica to Salt Stress by Arbuscular Mycorrhiza, Glomus fasciculatum may be Partly Related to Elevated K/Na Ratios in Root and Shoot Tissues , 2007, Microbial Ecology.

[27]  R. Aroca,et al.  How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? , 2007, The New phytologist.

[28]  J. Zwiazek,et al.  Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. , 2006, Plant biology.

[29]  R. Munns Genes and salt tolerance: bringing them together. , 2005, The New phytologist.

[30]  R. Peterson,et al.  Structural characteristics of rootfungal interactions for five ericaceous species in eastern Canada , 2005 .

[31]  C. Scagel,et al.  Inoculation with Ericoid Mycorrhizal Fungi Alters Root Colonization and Growth in Nursery Production of Blueberry Plants from Tissue Culture and Cuttings , 2005 .

[32]  R. Duponnois,et al.  Growth response of the saltbush Atriplex nummularia L. to inoculation with the arbuscular mycorrhizal fungus Glomus intraradices , 2005 .

[33]  M. Weiß,et al.  Aquaporins in poplar: What a difference a symbiont makes! , 2005, Planta.

[34]  K. Mukerji,et al.  Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake , 2004, Mycorrhiza.

[35]  David Read,et al.  Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes , 2004 .

[36]  T. Sharkey,et al.  Diffusive and metabolic limitations to photosynthesis under drought and salinity in C(3) plants. , 2004, Plant biology.

[37]  J. Cairney,et al.  Influence of water stress on biomass production by isolates of an ericoid mycorrhizal endophyte of Woollsia pungens and Epacris microphylla (Ericaceae) , 2003, Mycorrhiza.

[38]  F. Maathuis,et al.  Calluna vulgaris root cells show increased capacity for amino acid uptake when colonized with the mycorrhizal fungus Hymenoscyphus ericae. , 2002, The New phytologist.

[39]  M. Girlanda,et al.  Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex) , 2000, Molecular ecology.

[40]  J. Cairney,et al.  Evolution: Symbiotic solution to arsenic contamination , 2000, Nature.

[41]  V. Martínez,et al.  Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity? , 2000, The New phytologist.

[42]  M. Girlanda,et al.  Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions , 2000 .

[43]  J. Zwiazek,et al.  Responses of boreal plants to high salinity oil sands tailings water , 1999 .

[44]  J. Zwiazek,et al.  Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest , 1998 .

[45]  V. Lieffers,et al.  The effect of humidity on photosynthesis and water relations of white spruce seedlings during the early establishment phase , 1996 .

[46]  D. Read The Structure and Function of the Ericoid Mycorrhizal Root , 1996 .

[47]  J. Leake,et al.  Phosphodiesters as mycorrhizal P sources: II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon. , 1996, The New phytologist.

[48]  D. Read,et al.  The biology of mycorrhiza in the Ericaceae: XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. , 1990, The New phytologist.

[49]  L. Englander,et al.  A Method for the Synthesis of a Mycorrhizal Association Between Pezizella Ericae and Rhododendron Maximum Seedlings Growing in a Defined Medium , 1981 .

[50]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[51]  Xiaoli Ma,et al.  Plant salt-tolerance mechanism: A review. , 2018, Biochemical and biophysical research communications.

[52]  Y. Zou,et al.  Arbuscular Mycorrhizal Fungi and Tolerance of Drought Stress in Plants , 2017 .

[53]  F. Song,et al.  Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants , 2017 .

[54]  M. Kemppainen,et al.  Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. , 2015, The New phytologist.

[55]  E. Martino,et al.  14 Genetic Diversity and Functional Aspects of Ericoid Mycorrhizal Fungi , 2012 .

[56]  Melanie D. Jones,et al.  Effects of NaCl on responses of ectomycorrhizal black spruce (Picea mariana), white spruce (Picea glauca) and jack pine (Pinus banksiana) to fluoride. , 2009, Physiologia plantarum.

[57]  J. Luteyn Diversity, adaptation, and endemism in neotropical Ericaceae: biogeographical patterns in the Vaccinieae , 2008, The Botanical Review.

[58]  J. Zwiazek,et al.  Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings , 2004, Plant and Soil.

[59]  R. Augé Stomatal Behavior of Arbuscular Mycorrhizal Plants , 2000 .

[60]  P. Jarvis,et al.  Plant photosynthetic production. Manual of methods. , 1971 .