Optimal control of non-Markovian dynamics in open quantum systems

We study the optimal control problem in a non-Markovian open quantum system. The quantum system of interest is coupled to its local environment, which is dissipative in nature and tends to decay the quantum system. Based on the non-Markovian master equation, we study the non-Markovian effects on the system dynamics. The non-Markovian environment has dual effects on the quantum system: the dissipation and the backaction. The dissipation effect makes the system lose of quantum features, whereas the backaction revives it. We further design quantum control laws to control the system. The optimal control principle is studied to steer to quantum state to a target state. Finally, as an example, we used the optimal control method to control the quantum decoherence.

[1]  W. Marsden I and J , 2012 .

[2]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[3]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[4]  Jing Zhang,et al.  Optimal bang-bang control for SU(1,1) coherent states , 2007 .

[5]  F. Nori,et al.  Leggett–Garg inequalities , 2013, 1304.5133.

[6]  Wei Cui,et al.  Optimal dynamical decoupling sequence for the Ohmic spectrum , 2010, 1001.2960.

[7]  Franco Nori,et al.  Confidence and backaction in the quantum filter equation , 2012 .

[8]  Franco Nori,et al.  Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. , 2005, Physical review letters.

[9]  Ryan Hamerly,et al.  Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.

[10]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[11]  Wei Cui,et al.  Controlled population transfer for quantum computing in non-Markovian noise environment , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[12]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[13]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[14]  Paulo E. M. F. Mendonca,et al.  Quantum Control of a Single Qubit , 2006, quant-ph/0608037.

[15]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[16]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[17]  V. P. Belavkin,et al.  Measurement, filtering and control in quantum open dynamical systems , 1999 .

[18]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[19]  F K Wilhelm,et al.  Optimal control of a qubit coupled to a non-Markovian environment. , 2006, Physical review letters.

[20]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[21]  Wei Cui,et al.  Non-Markovian entanglement dynamics in coupled superconducting qubit systems , 2010, 1004.4303.

[22]  G. J. Milburn,et al.  Quantum error correction for continuously detected errors , 2003 .

[23]  F. Nori,et al.  Landau-Zener-Stückelberg interferometry , 2009, 0911.1917.

[24]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[25]  Franco Nori,et al.  Quantum technologies: an old new story , 2012 .

[26]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[27]  Measurement , 2007 .

[28]  Austin P Lund,et al.  Feedback control of nonlinear quantum systems: a rule of thumb. , 2007, Physical review letters.

[29]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[30]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[31]  Wei Cui,et al.  The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death , 2009, 0910.5210.

[32]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[33]  Yu Pan,et al.  Decoherence control for high-temperature reservoirs , 2008, Frontiers of Computer Science in China.

[34]  Bo Qi,et al.  Further Results on Stabilizing Control of Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[35]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[36]  Claudio Altafini,et al.  Stabilization of Stochastic Quantum Dynamics via Open- and Closed-Loop Control , 2011, IEEE Transactions on Automatic Control.

[37]  Z. Xi,et al.  Available control in dynamical decoupled quantum systems , 2012 .

[38]  V. Belavkin THEORY OF THE CONTROL OF OBSERVABLE QUANTUM SYSTEMS , 2005 .

[39]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[40]  Franco Nori,et al.  Nonperturbative theory of weak pre-and post-selected measurements , 2011, 1109.6315.

[41]  Wiseman,et al.  Using feedback to eliminate back-action in quantum measurements. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  Wei Cui,et al.  Non-Markovian entanglement dynamics between two coupled qubits in the same environment , 2009, 0910.5793.

[43]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[44]  A. M. Zagoskin Quantum Engineering: Superconducting multiqubit devices , 2011 .