ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation

[1]  Anne K. Braczynski,et al.  ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation , 2013, Cell Communication and Signaling.

[2]  E. Kremmer,et al.  Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62 , 2012, Cell Communication and Signaling.

[3]  V. Schreiber,et al.  New readers and interpretations of poly(ADP-ribosyl)ation , 2012, Trends in Biochemical Sciences.

[4]  O. Leo,et al.  Complex roles of members of the ADP-ribosyl transferase super family in immune defences: looking beyond PARP1. , 2012, Biochemical pharmacology.

[5]  W. Kraus,et al.  New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs , 2012, Nature Reviews Molecular Cell Biology.

[6]  David R Goodlett,et al.  A Review of Tandem Mass Spectrometry Characterization of Adenosine Diphosphate-Ribosylated Peptides. , 2012, International journal of mass spectrometry.

[7]  Wenqing Xu,et al.  Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. , 2012, Genes & development.

[8]  M. Dunstan,et al.  Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase , 2012, Nature Communications.

[9]  Shengqing Gu,et al.  Loss of Tankyrase-Mediated Destruction of 3BP2 Is the Underlying Pathogenic Mechanism of Cherubism , 2011, Cell.

[10]  T. Pawson,et al.  Structural Basis and Sequence Rules for Substrate Recognition by Tankyrase Explain the Basis for Cherubism Disease , 2011, Cell.

[11]  O. McGuinness,et al.  Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family , 2011, Proceedings of the National Academy of Sciences.

[12]  M. Dunstan,et al.  The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase , 2011, Nature.

[13]  T. Dawson,et al.  Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage , 2011, Proceedings of the National Academy of Sciences.

[14]  David P. Davis,et al.  Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling , 2011, PloS one.

[15]  K. Khabar,et al.  Green Fluorescent Protein Reporter System with Transcriptional Sequence Heterogeneity for Monitoring the Interferon Response , 2011, Journal of Virology.

[16]  A. Bauer,et al.  RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling , 2011, Nature Cell Biology.

[17]  Eun-Mi Hur,et al.  GSK3 signalling in neural development , 2010, Nature Reviews Neuroscience.

[18]  Bernhard Lüscher,et al.  Toward a unified nomenclature for mammalian ADP-ribosyltransferases. , 2010, Trends in biochemical sciences.

[19]  Dianqing Wu,et al.  GSK3: a multifaceted kinase in Wnt signaling. , 2010, Trends in biochemical sciences.

[20]  B. Lüscher,et al.  Learning How to Read ADP-Ribosylation , 2009, Cell.

[21]  Marc W. Kirschner,et al.  Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling , 2009, Nature.

[22]  Hung‐wen Liu,et al.  Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications. , 2009, Journal of the American Chemical Society.

[23]  S. West,et al.  Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1 , 2009, Science.

[24]  M. Washburn,et al.  Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler , 2009, Proceedings of the National Academy of Sciences.

[25]  E. Stelzer,et al.  A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation , 2009, Nature Structural &Molecular Biology.

[26]  J. Shupe,et al.  Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-β , 2009, PLoS pathogens.

[27]  Simon Messner,et al.  Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites , 2009, Nucleic acids research.

[28]  R. Lahesmaa,et al.  PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. , 2009, Blood.

[29]  D. Litchfield,et al.  Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. , 2008, Molecular cell.

[30]  G. Michaud,et al.  Protein kinase substrate identification on functional protein arrays , 2008, BMC biotechnology.

[31]  Stephen C. West,et al.  Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins , 2008, Nature.

[32]  B. Lüscher,et al.  The Ins and Outs of MYC Regulation by Posttranslational Mechanisms* , 2006, Journal of Biological Chemistry.

[33]  M. Hottiger,et al.  Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going? , 2006, Microbiology and Molecular Biology Reviews.

[34]  V. Schreiber,et al.  Poly(ADP-ribose): novel functions for an old molecule , 2006, Nature Reviews Molecular Cell Biology.

[35]  Sheng‐Chung Lee,et al.  CDK-dependent Activation of Poly(ADP-ribose) Polymerase Member 10 (PARP10)* , 2006, Journal of Biological Chemistry.

[36]  J. Moss,et al.  Identification and Characterization of a Mammalian 39-kDa Poly(ADP-ribose) Glycohydrolase* , 2006, Journal of Biological Chemistry.

[37]  B. Lüscher,et al.  Overlap of the gene encoding the novel poly(ADP-ribose) polymerase Parp10 with the plectin 1 gene and common use of exon sequences. , 2005, Genomics.

[38]  E. Kremmer,et al.  PARP-10, a novel Myc-interacting protein with poly(ADP-ribose) polymerase activity, inhibits transformation , 2005, Oncogene.

[39]  Klaus Resch,et al.  Phosphorylation of Serine 468 by GSK-3β Negatively Regulates Basal p65 NF-κB Activity* , 2004, Journal of Biological Chemistry.

[40]  P. Chambon,et al.  Functional interaction between PARP‐1 and PARP‐2 in chromosome stability and embryonic development in mouse , 2003, The EMBO journal.

[41]  B. Doble,et al.  GSK-3: tricks of the trade for a multi-tasking kinase , 2003, Journal of Cell Science.

[42]  P. Dollé,et al.  Poly(ADP-ribose) Polymerase-2 (PARP-2) Is Required for Efficient Base Excision DNA Repair in Association with PARP-1 and XRCC1* , 2002, The Journal of Biological Chemistry.

[43]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[44]  P. Cohen,et al.  The renaissance of GSK3 , 2001, Nature Reviews Molecular Cell Biology.

[45]  S. Johnstone,et al.  Inactivation of platelet‐derived growth factor‐BB following modification by ADP‐ribosyltransferase , 2001, British journal of pharmacology.

[46]  Laurence H. Pearl,et al.  Crystal Structure of Glycogen Synthase Kinase 3β Structural Basis for Phosphate-Primed Substrate Specificity and Autoinhibition , 2001, Cell.

[47]  P. Cohen,et al.  A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. , 2001, Molecular Cell.

[48]  L. Aravind The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. , 2001, Trends in biochemical sciences.

[49]  Harold E. Varmus,et al.  Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos , 1995, Nature.

[50]  M. Hochstrasser,et al.  Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function. , 1991, The Journal of biological chemistry.

[51]  B. Olivera,et al.  Poly(ADP-ribosylation) in vitro. Reaction parameters and enzyme mechanism. , 1982, The Journal of biological chemistry.

[52]  B. Roschitzki,et al.  Identification of distinct amino acids as ADP-ribose acceptor sites by mass spectrometry. , 2011, Methods in molecular biology.

[53]  R. Jope,et al.  Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). , 2010, Trends in immunology.

[54]  A. Beck‐Sickinger,et al.  Cell Communication and Signaling , 2009 .

[55]  Klaus Resch,et al.  Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. , 2004, The Journal of biological chemistry.