Intramolecular interactions (O-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π) in isomers of neutral, cation, and anion dopamine molecules: A DFT study on the influence of solvents (water and ethanol)

[1]  Senthilkumar Lakshmipathi,et al.  Complexes of criegee intermediate CH2OO with CO, CO2, H2O, SO2, NO2, CH3OH, HCOOH and CH3CH3CO molecules – A DFT study on bonding, energetics and spectra , 2021 .

[2]  U. L. Fulco,et al.  Insights into solid-state properties of dopamine and L-Dopa hydrochloride crystals through DFT calculations , 2020 .

[3]  Jikai Liu,et al.  GIAO 13C NMR Calculation with Sorted Training Sets Improves Accuracy and Reliability for Structural Assignation. , 2020, The Journal of organic chemistry.

[4]  Md. Faruk Hossain,et al.  Electrochemical Detection of Neurotransmitters , 2020, Biosensors.

[5]  E. Kraka,et al.  Quantitative assessment of intramolecular hydrogen bonds in neutral histidine , 2020, Theoretical Chemistry Accounts.

[6]  Nidhi Chauhan,et al.  Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective , 2020 .

[7]  Agnes Lincy Arokiyanathan,et al.  H, OH and COOH functionalized magnesium phthalocyanine as a catalyst for oxygen reduction reaction (ORR) – A DFT study , 2020 .

[8]  J. A. Fernández Exploring Hydrogen Bond in Biological Molecules , 2019, Journal of the Indian Institute of Science.

[9]  Liping Wang,et al.  Treatment Of Magnesium-L-Threonate Elevates The Magnesium Level In The Cerebrospinal Fluid And Attenuates Motor Deficits And Dopamine Neuron Loss In A Mouse Model Of Parkinson’s disease , 2019, Neuropsychiatric disease and treatment.

[10]  Mounir Boukadoum,et al.  A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research , 2019, Applied Sciences.

[11]  M. Koshi,et al.  A simple heuristic approach to estimate the thermochemistry of condensed-phase molecules based on the polarizable continuum model. , 2019, Physical chemistry chemical physics : PCCP.

[12]  Xinxing Zhang,et al.  Stable Parent Anions of Dopamine and Adrenaline: A New Form of Neurotransmitters. , 2019, The journal of physical chemistry. B.

[13]  Senthilkumar Lakshmipathi,et al.  C–H···O interaction between cation and anion in amino acid-based ionic liquids—A DFT study in gas and solvent phase , 2018, Structural Chemistry.

[14]  G. Ji,et al.  Two-Dimensional Infrared Spectra of Cationic Dopamine under Different Electric Fields: Theoretical Studies from the Density Function Theory Anharmonic Potential , 2018, The Journal of Physical Chemistry C.

[15]  T. Yadav,et al.  Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol]. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[16]  J. Garza,et al.  Reactivity Sites in Dopamine Depend on its Intramolecular Hydrogen Bond , 2017 .

[17]  John D. Ciubuc,et al.  Raman Computational and Experimental Studies of Dopamine Detection , 2017, Biosensors.

[18]  V. Subramanian,et al.  Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding , 2016, Journal of Chemical Sciences.

[19]  Senthilkumar Lakshmipathi,et al.  Hydrogen bonds in Zif268 proteins – a theoretical perspective , 2016, Journal of Biomolecular Structure and Dynamics.

[20]  R. Boča,et al.  Oxidation properties of dopamine at and near physiological conditions , 2015, Monatshefte für Chemie - Chemical Monthly.

[21]  M. Terrones,et al.  Differential Response of Doped/Defective Graphene and Dopamine to Electric Fields: A Density Functional Theory Study , 2015 .

[22]  P. Umadevi,et al.  Influence of metal ions (Zn2+, Cu2+, Ca2+, Mg2+ and Na+) on the water coordinated neutral and zwitterionic L-histidine dimer , 2014 .

[23]  P. Kolandaivel,et al.  Hydrogen-bonded complexes of serotonin with methanol and ethanol: a DFT study , 2014, Structural Chemistry.

[24]  N. Shankland,et al.  Tautomeric and ionisation forms of dopamine and tyramine in the solid state , 2013 .

[25]  P. Kolandaivel,et al.  Theoretical investigations on the hydrogen bonding of nitrile isomers with H2O, HF, NH3 and H2S , 2013 .

[26]  J. López,et al.  Seven Conformers of Neutral Dopamine Revealed in the Gas Phase. , 2013, The journal of physical chemistry letters.

[27]  Frank Weinhold,et al.  Natural bond orbital analysis: A critical overview of relationships to alternative bonding perspectives , 2012, J. Comput. Chem..

[28]  Dean J. Tantillo,et al.  Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. , 2012, Chemical reviews.

[29]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[30]  Milind M. Deshmukh,et al.  Intramolecular hydrogen bond energy and cooperative interactions in α‐, β‐, and γ‐cyclodextrin conformers , 2011, J. Comput. Chem..

[31]  Alexander D. MacKerell,et al.  Influence of solvent and intramolecular hydrogen bonding on the conformational properties of o-linked glycopeptides. , 2011, The journal of physical chemistry. B.

[32]  I. Hamilton,et al.  Quantum chemical calculations on solvation effects for selected photoreactive aromatic organic molecules of atmospheric relevance , 2011 .

[33]  G. Berden,et al.  Infrared spectra of protonated neurotransmitters: dopamine. , 2011, Physical chemistry chemical physics : PCCP.

[34]  T. Pal,et al.  Dopamine Molecules on Aucore-Agshell Bimetallic Nanocolloids: Fourier Transform Infrared, Raman, and Surface-Enhanced Raman Spectroscopy Study Aided by Density Functional Theory , 2009 .

[35]  P. Kolandaivel,et al.  Hydrogen bonding in substituted formic acid dimers. , 2006, The journal of physical chemistry. A.

[36]  J. Yates,et al.  A combined first principles computational and solid-state NMR study of a molecular crystal: flurbiprofen. , 2005, Physical chemistry chemical physics : PCCP.

[37]  N. Trendafilova,et al.  DFT and AIM studies of intramolecular hydrogen bonds in dicoumarols , 2004 .

[38]  M. Scheffler,et al.  On the Accuracy of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality , 2004 .

[39]  Alexander V Efimov,et al.  Relationship between intramolecular hydrogen bonding and solvent accessibility of side‐chain donors and acceptors in proteins , 2003, FEBS letters.

[40]  S. J. Grabowski,et al.  DFT and AIM studies on two-ring resonance assisted hydrogen bonds , 2003 .

[41]  Bo Tang,et al.  Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. , 2002, Talanta.

[42]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[43]  Engen Libowitzky,et al.  Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals , 1999 .

[44]  C. Ghio,et al.  Theoretical Studies on the Conformation of Protonated Dopamine in the Gas Phase and in Aqueous Solution , 1999 .

[45]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[46]  G. R. Famini,et al.  A computational study of solvent effects on the conformation of dopamine , 1992 .

[47]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[48]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[49]  C. Reichardt Solvent effects on chemical reactivity , 1982 .

[50]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[51]  J. Giesecke Refinement of the structure of dopamine hydrochloride , 1980 .

[52]  O. Tapia,et al.  A quantum chemical study of solvent effects on biomolecules: an application of the virtual charge model and the self-consistent reaction field theory of solvent effect to γ-amino butyric acid, β-alanine and glycine , 1979 .

[53]  J. Musacchio Enzymes Involved in the Biosynthesis and Degradation of Catecholamines , 1975 .