An efficient microinjection method to generate human anaplasmosis agent Anaplasma phagocytophilum-infected ticks

[1]  L. G. Neumann Ixodidae , 2022, CABI Compendium.

[2]  H. Sultana,et al.  Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host , 2020, PLoS genetics.

[3]  H. Sultana,et al.  Ixodes scapularis Src tyrosine kinase facilitates Anaplasma phagocytophilum survival in its arthropod vector. , 2019, Ticks and tick-borne diseases.

[4]  W. Jiskoot,et al.  Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products. , 2019, Journal of pharmaceutical sciences.

[5]  H. Sultana,et al.  Characterization of tick organic anion transporting polypeptides (OATPs) upon bacterial and viral infections , 2018, Parasites & Vectors.

[6]  H. Sultana,et al.  Arthropod transcriptional activator protein-1 (AP-1) aids tick-rickettsial pathogen survival in the cold , 2018, Scientific Reports.

[7]  M. Krumrey,et al.  Hollow organosilica beads as reference particles for optical detection of extracellular vesicles , 2018, Journal of thrombosis and haemostasis : JTH.

[8]  E. Fikrig,et al.  Artificial Infection of Ticks with Borrelia burgdorferi Using a Microinjection Method and Their Detection In Vivo Using Quantitative PCR Targeting flaB RNA. , 2018, Methods in molecular biology.

[9]  H. Sultana,et al.  Human rickettsial pathogen modulates arthropod organic anion transporting polypeptide and tryptophan pathway for its survival in ticks , 2017, Scientific Reports.

[10]  K. Fujisaki,et al.  Synchronous Langat Virus Infection of Haemaphysalis longicornis Using Anal Pore Microinjection , 2017, Viruses.

[11]  H. Sultana,et al.  An In Vitro Blood-Feeding Method Revealed Differential Borrelia turicatae (Spirochaetales: Spirochaetaceae) Gene Expression After Spirochete Acquisition and Colonization in the Soft Tick Ornithodoros turicata (Acari: Argasidae) , 2016, Journal of Medical Entomology.

[12]  J. Bakken,et al.  Human granulocytic anaplasmosis. , 2008, Infectious disease clinics of North America.

[13]  H. Sultana,et al.  Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases , 2014, Archivum Immunologiae et Therapiae Experimentalis.

[14]  J. Carlyon,et al.  Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. , 2013, Microbes and infection.

[15]  E. G. Granquist,et al.  Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies , 2013, Front. Cell. Infect. Microbiol..

[16]  Å. Lundkvist,et al.  Identification of Anaplasma phagocytophilum in tick populations in Estonia, the European part of Russia and Belarus. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[17]  Y. Rikihisa Mechanisms of Obligatory Intracellular Infection with Anaplasma phagocytophilum , 2011, Clinical Microbiology Reviews.

[18]  J. Dumler,et al.  Distinct Host Species Correlate with Anaplasma phagocytophilum ankA Gene Clusters , 2010, Journal of Clinical Microbiology.

[19]  H. Sultana,et al.  Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. , 2010, The Journal of clinical investigation.

[20]  S. Malawista,et al.  Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks , 2010, The Journal of experimental medicine.

[21]  Y. Rikihisa Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells , 2010, Nature Reviews Microbiology.

[22]  J. McBride,et al.  Human ehrlichiosis and anaplasmosis. , 2010, Clinics in laboratory medicine.

[23]  J. Carlyon,et al.  Anaplasma phagocytophilum Dense-Cored Organisms Mediate Cellular Adherence through Recognition of Human P-Selectin Glycoprotein Ligand 1 , 2009, Infection and Immunity.

[24]  U. Munderloh,et al.  Transovarial Transmission of Francisella-Like Endosymbionts and Anaplasma phagocytophilum Variants in Dermacentor albipictus (Acari: Ixodidae) , 2009, Journal of medical entomology.

[25]  N. Nieto,et al.  Distinct Ecologically Relevant Strains of Anaplasma phagocytophilum , 2009, Emerging infectious diseases.

[26]  John F Anderson,et al.  Biology of ticks. , 2008, Infectious disease clinics of North America.

[27]  J. Dumler,et al.  Sequential Analysis of Anaplasma phagocytophilum msp2 Transcription in Murine and Equine Models of Human Granulocytic Anaplasmosis , 2007, Clinical and Vaccine Immunology.

[28]  T. Kröber,et al.  In vitro feeding assays for hard ticks. , 2007, Trends in parasitology.

[29]  C. Almazán,et al.  Experimental Infection of C3H/HeJ Mice with the NY18 Isolate of Anaplasma phagocytophilum , 2007, Veterinary pathology.

[30]  N. Nieto,et al.  Anaplasma phagocytophilum subverts tick salivary gland proteins. , 2007, Trends in parasitology.

[31]  D. Roellig,et al.  Prophylactic Use of Sustained‐Release Doxycycline Blocks Tick‐Transmitted Infection by Anaplasma phagocytophilum in a Murine Model , 2005, Annals of the New York Academy of Sciences.

[32]  J. Bakken,et al.  Human Granulocytic Anaplasmosis and Anaplasma phagocytophilum , 2005, Emerging infectious diseases.

[33]  N. Ohashi,et al.  Anaplasma phagocytophilum–infected Ticks, Japan , 2005, Emerging infectious diseases.

[34]  J. Carlyon Laboratory Maintenance of Anaplasma phagocytophilum , 2005, Current protocols in microbiology.

[35]  S. Barthold,et al.  Coinfection with Anaplasma phagocytophilum Alters Borrelia burgdorferi Population Distribution in C3H/HeN Mice , 2005, Infection and Immunity.

[36]  M. Levin,et al.  Acquisition of different isolates of Anaplasma phagocytophilum by Ixodes scapularis from a model animal. , 2004, Vector borne and zoonotic diseases.

[37]  K. Holden,et al.  Detection of Borrelia burgdorferi, Ehrlichia chaffeensis, and Anaplasma phagocytophilum in Ticks (Acari: Ixodidae) from a Coastal Region of California , 2003, Journal of medical entomology.

[38]  S. Barthold,et al.  The mouse as a model for investigation of human granulocytic ehrlichiosis: current knowledge and future directions. , 2002, Comparative medicine.

[39]  L. Schouls,et al.  Identification of Ehrlichia spp. andBorrelia burgdorferi in Ixodes Ticks in the Baltic Regions of Russia , 2001, Journal of Clinical Microbiology.

[40]  L. Fang,et al.  Granulocytic Ehrlichiae in Ixodes persulcatus Ticks from an Area in China Where Lyme Disease Is Endemic , 2000, Journal of Clinical Microbiology.

[41]  J. Dumler,et al.  Development and distribution of pathologic lesions are related to immune status and tissue deposition of human granulocytic ehrlichiosis agent-infected cells in a murine model system. , 1999, The Journal of infectious diseases.

[42]  J. L. Goodman,et al.  Invasion and Intracellular Development of the Human Granulocytic Ehrlichiosis Agent in Tick Cell Culture , 1999, Journal of Clinical Microbiology.

[43]  D. Fish,et al.  Acquisition and Transmission of the Agent of Human Granulocytic Ehrlichiosis by Ixodes scapularis Ticks , 1998, Journal of Clinical Microbiology.

[44]  E. Fikrig,et al.  Granulocytic ehrlichiosis in the laboratory mouse. , 1998, The Journal of infectious diseases.