Fourier normalized-fringe analysis by zero-order spectrum suppression using a parameter estimation approach

Abstract. The simple filtering procedure, high spatial resolution, and low computation time benefits of Fourier normalized-fringe analysis are verified. For this, both the fringe-pattern normalization method by parameter estimation using the least squares method and the standard Fourier transform method are implemented. This proposal, or any Fourier normalized-fringe analysis scheme, has the advantage that the filter’s properties are not very critical because the zero-order spectrum is suppressed by the normalization stage. Then, the simple half-plane filter is applied in the filtering procedure which, in addition, increases the spatial resolution. Both a computer simulation and the experimental results show the functionality and feasibility of the suggested scheme.

[1]  Xianyu Su,et al.  Method for eliminating zero spectrum in Fourier transform profilometry , 2005 .

[2]  P. Ronney,et al.  Modified Fourier transform method for interferogram fringe pattern analysis. , 1997, Applied optics.

[3]  Jingang Zhong,et al.  Generalized Fourier analysis for phase retrieval of fringe pattern. , 2010, Optics express.

[4]  Manuel Servin,et al.  Adaptive quadrature filters and the recovery of phase from fringe pattern images , 1997 .

[5]  Eryi Hu,et al.  Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry , 2009 .

[6]  I. Leizerson,et al.  Fourier fringe analysis with improved spatial resolution. , 2003, Applied optics.

[7]  J H Massig,et al.  Fringe-pattern analysis with high accuracy by use of the fourier-transform method: theory and experimental tests. , 2001, Applied optics.

[8]  Yu Fu,et al.  Wavelet analysis of speckle patterns with a temporal carrier. , 2005, Applied optics.

[9]  J. Bokor,et al.  Fourier-transform method of phase-shift determination. , 2001, Applied optics.

[10]  Xianyu Su,et al.  Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Qian Kemao,et al.  Dynyamic 3D profiling with fringe projection using least squares method and windowed Fourier filtering , 2013 .

[12]  Antonio Verga,et al.  Fast Fourier transform based image compression algorithm optimized for speckle interferometer measurements , 1997 .

[13]  J A Quiroga,et al.  Adaptive monogenic filtering and normalization of ESPI fringe patterns. , 2005, Optics letters.

[14]  Paulo J. Tavares,et al.  Single image orthogonal fringe technique for resolution enhancement of the Fourier transform fringe analysis method , 2013 .

[15]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[16]  Alejandro Federico,et al.  Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. , 2009, Applied optics.

[17]  Liyun Zhong,et al.  Frequency domain phase extraction algorithm for phase-shifting interferometry with random phase-shifting amount and low-sampling rate , 2013 .

[18]  Kenbu Teramoto,et al.  Windowed Fourier assisted two-dimensional Hilbert transform for fringes phase extraction , 2013 .

[19]  Guangyu Jiang,et al.  Fourier transform profilometry based on defocusing , 2012 .

[20]  Thomas Kreis,et al.  Digital holographic interference-phase measurement using the Fourier-transform method , 1986 .

[21]  Noé Alcalá Ochoa,et al.  Normalization and noise-reduction algorithm for fringe patterns , 2007 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Pramod Rastogi,et al.  Super-resolution Fourier transform method in phase shifting interferometry. , 2005, Optics express.

[24]  Zonghua Zhang,et al.  Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry , 2012 .

[25]  K Larkin,et al.  A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns. , 2001, Optics express.

[26]  Cho Jui Tay,et al.  An improved windowed Fourier transform for fringe demodulation , 2010 .

[27]  F. bai,et al.  Modified Fourier-transform method for phase-shift calibration , 2011 .

[28]  Xianyu Su,et al.  Real-time calibration algorithm for phase shifting in phase-measuring profilometry , 2001 .

[29]  Manuel Servin,et al.  Robust quadrature filters , 1997 .

[30]  Feipeng Da,et al.  A novel color fringe projection based Fourier transform 3D shape measurement method , 2012 .

[31]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[32]  F Roddier,et al.  Interferogram analysis using Fourier transform techniques. , 1987, Applied optics.

[33]  Steve Vanlanduit,et al.  Fourier fringe processing by use of an interpolated Fourier-transform technique. , 2004, Applied optics.

[34]  Mingguang Shan,et al.  Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the Fourier plane. , 2013, Optics express.

[35]  Juan Antonio Quiroga Mellado,et al.  Algorithm for fringe pattern normalization , 2001 .

[36]  Baozhen Ge,et al.  Elimination of zero-order diffraction in digital off-axis holography , 2004 .

[37]  Qican Zhang,et al.  Fourier transform profilometry based on a fringe pattern with two frequency components , 2008 .

[38]  Y Takeda,et al.  Random phase shifters for fourier transformed holograms. , 1972, Applied optics.

[39]  D Malacara-Hernández,et al.  Analysis of interferograms with a spatial radial carrier or closed fringes and its holographic analogy. , 1998, Applied optics.

[40]  Cruz Meneses-Fabian,et al.  Generalized phase-shifting interferometry by parameter estimation with the least squares method , 2013 .

[41]  Shi-lin Cui,et al.  Method to eliminate the zero spectra in Fourier transform profilometry based on a cost function. , 2012, Applied optics.

[42]  Mitsuo Takeda,et al.  Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review [Invited]. , 2013, Applied optics.

[43]  M. Servin,et al.  Isotropic n-dimensional fringe pattern normalization , 2003 .

[44]  Chi-Ching Chang,et al.  Numerical suppression of zero-order image in digital holography. , 2007, Optics express.

[45]  Liang-Chia Chen,et al.  Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction , 2010 .

[46]  Slobodan Mitrović,et al.  Refined fourier-transform method of analysis of full two-dimensional digitized interferograms. , 2003, Applied optics.

[47]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis. , 2004, Applied optics.

[48]  Mark A. Neifeld,et al.  Wave front reconstruction by means of phase-shifting digital in-line holography , 2000 .

[49]  Paulo J. Tavares,et al.  Orthogonal projection technique for resolution enhancement of the Fourier transform fringe analysis method , 2006 .

[50]  Anand Asundi,et al.  Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry , 2010 .

[51]  José A. Gómez-Pedrero,et al.  Algorithm for fringe pattern normalization , 2001 .