QUANTUM SYMMETRY GROUPS AND RELATED TOPICS WINTER SCHOOL ON OPERATOR SPACES, NONCOMMUTATIVE PROBABILITY AND QUANTUM GROUPS MÉTABIEF, DECEMBER 2014

Groups first entered mathematics in their geometric guise, as collections of all symmetries of a given object, be it a finite set, a polygon, a metric space or a differential manifold. Original definitions of quantum groups, also in the analytic context, had rather algebraic character. In these lectures we describe several examples of quantum symmetry groups of a given quantum (or classical) space. The theory is based on the concept of actions of (compact) quantum groups on C∗-algebras and viewing symmetry groups as universal objects acting on a given structure. Initiated by Wang in 1990s, in recent years it has been developing rapidly, exhibiting connections to combinatorics, free probability and noncommutative geometry. In these lectures we will present both older and newer research developments regarding quantum symmetry groups, discussing both the general theory and specific examples. I would like to thank here all my collaborators on articles related to quantum symmetry groups and thus also to these lectures. Particular thanks are due to Teo Banica, but I would also like to mention Jyotishman Bhowmick, Debashish Goswami and Piotr So ltan.

[1]  S. Woronowicz,et al.  Quantum automorphism groups of finite quantum groups are classical , 2014, 1410.1404.

[2]  Adam G. Skalski,et al.  Quantum group of automorphisms of a finite quantum group , 2014, 1406.0862.

[3]  Adam Skalski,et al.  The quantum algebra of partial Hadamard matrices , 2013, 1310.3855.

[4]  Adam G. Skalski,et al.  Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras , 2013, 1305.4589.

[5]  Manon Thibault De Chanvalon Quantum symmetry groups of Hilbert modules equipped with orthogonal filtrations , 2013, 1304.3718.

[6]  Stuart White,et al.  The Haagerup property for locally compact quantum groups , 2013, 1303.3261.

[7]  P. Kasprzak,et al.  Embeddable quantum homogeneous spaces , 2012, 1210.2221.

[8]  Daowen Qiu,et al.  Quantum isometry groups for dihedral group D2(2n+1)☆ , 2012 .

[9]  Adam G. Skalski,et al.  Quantum symmetry groups of C*‐algebras equipped with orthogonal filtrations , 2011, 1109.6184.

[10]  Adam G. Skalski,et al.  Noncommutative homogeneous spaces: The matrix case , 2011, 1109.6162.

[11]  T. Banica Quantum permutations, Hadamard matrices, and the search for matrix models , 2011, 1109.4888.

[12]  P. Sołtan,et al.  Quantum isometry groups of symmetric groups , 2011, 1107.1657.

[13]  T. Banica,et al.  Finite quantum groups and quantum permutation groups , 2011, 1104.1400.

[14]  Michael Brannan Approximation properties for free orthogonal and free unitary quantum groups , 2011, 1103.0264.

[15]  Adam G. Skalski,et al.  Quantum isometry groups of duals of free powers of cyclic groups , 2010, 1011.5400.

[16]  Adam G. Skalski,et al.  Two-parameter families of quantum symmetry groups , 2010, 1009.4845.

[17]  J. Quaegebeur,et al.  Isometric coactions of compact quantum groups on compact quantum metric spaces , 2010, 1007.0363.

[18]  P. Sołtan On actions of compact quantum groups , 2010, 1003.5526.

[19]  Adam G. Skalski,et al.  Quantum isometry groups of noncommutative manifolds associated to group C∗-algebras , 2010, 1002.2551.

[20]  Debashish Goswami,et al.  Quantum Isometries and Noncommutative Spheres , 2009, 0905.3814.

[21]  S. Curran Quantum Exchangeable Sequences of Algebras , 2008, 0812.3428.

[22]  P. Sołtan On quantum semigroup actions on finite quantum spaces , 2008, 0810.0596.

[23]  Teodor Banica,et al.  Liberation of orthogonal Lie groups , 2008, 0808.2628.

[24]  Adam G. Skalski,et al.  Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.

[25]  Teodor Banica,et al.  HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS , 2008, Glasgow Mathematical Journal.

[26]  Debashish Goswami,et al.  Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.

[27]  Debashish Goswami,et al.  Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.

[28]  Debashish Goswami Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.

[29]  B. Collins,et al.  THE HYPEROCTAHEDRAL QUANTUM GROUP , 2007, math/0701859.

[30]  B. Collins,et al.  Quantum permutation groups: a survey , 2006, math/0612724.

[31]  P. Sołtan Quantum families of maps and quantum semigroups on finite quantum spaces , 2006, math/0610922.

[32]  T. Banica,et al.  Quantum automorphism groups of vertex-transitive graphs of order ≤ 11 , 2006, math/0601758.

[33]  Hanfeng Li Compact quantum metric spaces and ergodic actions of compact quantum groups , 2004, math/0411178.

[34]  T. Banica Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[35]  G. Murphy,et al.  Co-amenability of compact quantum groups , 2000, math/0010248.

[36]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[37]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[38]  T. Banica Representations of compact quantum groups and subfactors , 1998, math/9804015.

[39]  Ann Maes,et al.  Notes on Compact Quantum Groups , 1998, math/9803122.

[40]  Y. Soibelman,et al.  Algebras of Functions on Quantum Groups: Part I , 1998 .

[41]  E. Christopher Lance,et al.  Hilbert C*-Modules: Stabilisation or absorption , 1995 .

[42]  Shuzhou Wang,et al.  Free products of compact quantum groups , 1995 .

[43]  T. Koornwinder,et al.  CQG algebras: A direct algebraic approach to compact quantum groups , 1994, hep-th/9406042.

[44]  P. Podlés Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.

[45]  G. Murphy C*-Algebras and Operator Theory , 1990 .

[46]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[47]  P. Sołtan Quantum SO(3) groups and quantum group actions on M2 , 2010 .

[48]  Nathanial P. Brown Narutaka Ozawa C*-Algebras and Finite-Dimensional Approximations , 2008 .

[49]  Y. Soibelman,et al.  Algebras of functions on quantum groups , 1998 .

[50]  A. V. Daele,et al.  UNIVERSAL QUANTUM GROUPS , 1996 .

[51]  F. Boca Ergodic actions of compact matrix pseudogroups on $C^*$-algebras , 1995 .

[52]  K. Thomsen,et al.  Hilbert C*-Modules , 1991 .