QUANTUM SYMMETRY GROUPS AND RELATED TOPICS WINTER SCHOOL ON OPERATOR SPACES, NONCOMMUTATIVE PROBABILITY AND QUANTUM GROUPS MÉTABIEF, DECEMBER 2014
暂无分享,去创建一个
[1] S. Woronowicz,et al. Quantum automorphism groups of finite quantum groups are classical , 2014, 1410.1404.
[2] Adam G. Skalski,et al. Quantum group of automorphisms of a finite quantum group , 2014, 1406.0862.
[3] Adam Skalski,et al. The quantum algebra of partial Hadamard matrices , 2013, 1310.3855.
[4] Adam G. Skalski,et al. Projective limits of quantum symmetry groups and the doubling construction for Hopf algebras , 2013, 1305.4589.
[5] Manon Thibault De Chanvalon. Quantum symmetry groups of Hilbert modules equipped with orthogonal filtrations , 2013, 1304.3718.
[6] Stuart White,et al. The Haagerup property for locally compact quantum groups , 2013, 1303.3261.
[7] P. Kasprzak,et al. Embeddable quantum homogeneous spaces , 2012, 1210.2221.
[8] Daowen Qiu,et al. Quantum isometry groups for dihedral group D2(2n+1)☆ , 2012 .
[9] Adam G. Skalski,et al. Quantum symmetry groups of C*‐algebras equipped with orthogonal filtrations , 2011, 1109.6184.
[10] Adam G. Skalski,et al. Noncommutative homogeneous spaces: The matrix case , 2011, 1109.6162.
[11] T. Banica. Quantum permutations, Hadamard matrices, and the search for matrix models , 2011, 1109.4888.
[12] P. Sołtan,et al. Quantum isometry groups of symmetric groups , 2011, 1107.1657.
[13] T. Banica,et al. Finite quantum groups and quantum permutation groups , 2011, 1104.1400.
[14] Michael Brannan. Approximation properties for free orthogonal and free unitary quantum groups , 2011, 1103.0264.
[15] Adam G. Skalski,et al. Quantum isometry groups of duals of free powers of cyclic groups , 2010, 1011.5400.
[16] Adam G. Skalski,et al. Two-parameter families of quantum symmetry groups , 2010, 1009.4845.
[17] J. Quaegebeur,et al. Isometric coactions of compact quantum groups on compact quantum metric spaces , 2010, 1007.0363.
[18] P. Sołtan. On actions of compact quantum groups , 2010, 1003.5526.
[19] Adam G. Skalski,et al. Quantum isometry groups of noncommutative manifolds associated to group C∗-algebras , 2010, 1002.2551.
[20] Debashish Goswami,et al. Quantum Isometries and Noncommutative Spheres , 2009, 0905.3814.
[21] S. Curran. Quantum Exchangeable Sequences of Algebras , 2008, 0812.3428.
[22] P. Sołtan. On quantum semigroup actions on finite quantum spaces , 2008, 0810.0596.
[23] Teodor Banica,et al. Liberation of orthogonal Lie groups , 2008, 0808.2628.
[24] Adam G. Skalski,et al. Quantum Isometry Groups of 0- Dimensional Manifolds , 2008, 0807.4288.
[25] Teodor Banica,et al. HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS , 2008, Glasgow Mathematical Journal.
[26] Debashish Goswami,et al. Quantum Group of Orientation preserving Riemannian Isometries , 2008, 0806.3687.
[27] Debashish Goswami,et al. Quantum Isometry Groups: Examples and Computations , 2007, 0707.2648.
[28] Debashish Goswami. Quantum Group of Isometries in Classical and Noncommutative Geometry , 2007, 0704.0041.
[29] B. Collins,et al. THE HYPEROCTAHEDRAL QUANTUM GROUP , 2007, math/0701859.
[30] B. Collins,et al. Quantum permutation groups: a survey , 2006, math/0612724.
[31] P. Sołtan. Quantum families of maps and quantum semigroups on finite quantum spaces , 2006, math/0610922.
[32] T. Banica,et al. Quantum automorphism groups of vertex-transitive graphs of order ≤ 11 , 2006, math/0601758.
[33] Hanfeng Li. Compact quantum metric spaces and ergodic actions of compact quantum groups , 2004, math/0411178.
[34] T. Banica. Quantum automorphism groups of small metric spaces , 2003, math/0304025.
[35] G. Murphy,et al. Co-amenability of compact quantum groups , 2000, math/0010248.
[36] Julien Bichon,et al. Quantum automorphism groups of finite graphs , 1999, math/9902029.
[37] Shuzhou Wang,et al. Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.
[38] T. Banica. Representations of compact quantum groups and subfactors , 1998, math/9804015.
[39] Ann Maes,et al. Notes on Compact Quantum Groups , 1998, math/9803122.
[40] Y. Soibelman,et al. Algebras of Functions on Quantum Groups: Part I , 1998 .
[41] E. Christopher Lance,et al. Hilbert C*-Modules: Stabilisation or absorption , 1995 .
[42] Shuzhou Wang,et al. Free products of compact quantum groups , 1995 .
[43] T. Koornwinder,et al. CQG algebras: A direct algebraic approach to compact quantum groups , 1994, hep-th/9406042.
[44] P. Podlés. Symmetries of quantum spaces. Subgroups and quotient spaces of quantumSU(2) andSO(3) groups , 1994, hep-th/9402069.
[45] G. Murphy. C*-Algebras and Operator Theory , 1990 .
[46] S. Woronowicz,et al. Compact matrix pseudogroups , 1987 .
[47] P. Sołtan. Quantum SO(3) groups and quantum group actions on M2 , 2010 .
[48] Nathanial P. Brown Narutaka Ozawa. C*-Algebras and Finite-Dimensional Approximations , 2008 .
[49] Y. Soibelman,et al. Algebras of functions on quantum groups , 1998 .
[50] A. V. Daele,et al. UNIVERSAL QUANTUM GROUPS , 1996 .
[51] F. Boca. Ergodic actions of compact matrix pseudogroups on $C^*$-algebras , 1995 .
[52] K. Thomsen,et al. Hilbert C*-Modules , 1991 .