A Composite Model for Representing Spectral Functions

In this report we propose a new model to represent spect ral functions called the composite model . This model is built on the idea that we decompose all spe ctral functions into smooth and spiky components, each with its own distinct representation. Specifically, a smooth spectrum can be expressed as a linear combination of a set of given basis functions and thus be represented through the corresponding coefficients. The discrete spike in a spiky spectral function can be represented directly through their locations and heights. For the smooth spectra, we propose resampling the functions that are reconstructed from the coefficients in the linear combination to improve efficiency. Spectral multiplications are thus greatly reduced in complexity. This new model demonstrates remarkable advantages in representing spectral functions with aspect to accuracy, compactness, computational efficiency, portabil ity, and flexibility. We expect that this work will significantly contribute to the research and applications in color science, realistic image synthesis, and color image analysis.

[1]  Roy Hall,et al.  A Testbed for Realistic Image Synthesis , 1983, IEEE Computer Graphics and Applications.

[2]  A. Sanders Optical radiation measurements , 1985 .

[3]  David R. Nadeau,et al.  The Vrml Sourcebook , 1996 .

[4]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[5]  Gary W. Meyer,et al.  Light Scattering Simulations using Complex Subsurface Models , 1997, Graphics Interface.

[6]  Leo Levi,et al.  Applied Optics: A Guide to Optical System Design, Vol. 1 , 1969 .

[7]  J. Valin,et al.  Commission internationale de l''éclairage (CIE) , 1991, Instrumentation et méthodes de mesure.

[8]  Richard S. Gallagher Computer Visualization: Graphics Techniques for Scientific and Engineering Analysis , 1994 .

[9]  Jeremy Myerson,et al.  Lamps and lighting , 1990 .

[10]  Ron Gershon,et al.  Measurement and Analysis of Object Reflectance Spectra , 1994 .

[11]  Michael Harville,et al.  Image capture: synthesis of sensor responses from multispectral images , 1997, Electronic Imaging.

[12]  James C. Miller,et al.  Computer graphics principles and practice, second edition , 1992, Comput. Graph..

[13]  Carlos F. Borges,et al.  Trichromatic approximation for computer graphics illumination models , 1991, SIGGRAPH.

[14]  L. F. Pau,et al.  Handbook of pattern recognition & computer vision , 1993 .

[15]  G. Forsythe Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .

[16]  M. D'Zmura Color constancy : surface color from changing illumination , 1992 .

[17]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[18]  Mark S. Peercy,et al.  Linear color representations for efficient image synthesis , 1996 .

[19]  Brian A. Wandell,et al.  The Synthesis and Analysis of Color Images , 1992, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Andrew S. Glassner,et al.  How to derive a spectrum from an RGB triplet , 1989, IEEE Computer Graphics and Applications.

[21]  Javier Hernández-Andrés,et al.  LINEAR BASES FOR SPECTRAL REFLECTANCE FUNCTIONS OF ACRYLIC PAINTS , 1998 .

[22]  Parry Moon,et al.  Polynomial Representation of Reflectance Curves , 1945 .

[23]  H. Joel Trussell,et al.  Color correction using principle components , 1991, Electronic Imaging.

[24]  Jessica K. Hodgins,et al.  Simulation Levels of Detail for Real-time Animation , 1997, Graphics Interface.

[25]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[26]  Glenn Healey,et al.  Using color for geometry-insensitive segmentation , 1989 .

[27]  Roy Hall,et al.  Illumination and Color in Computer Generated Imagery , 1988, Monographs in Visual Communication.

[28]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[29]  Gary W. Meyer,et al.  Wavelength selection for synthetic image generation , 1988, Comput. Vis. Graph. Image Process..

[30]  Przemyslaw Prusinkiewicz,et al.  Animation of the development of multicellular structures , 1990 .

[31]  E. R. Dixon Spectral distribution of Australian daylight , 1978 .

[32]  J. Dannemiller Spectral reflectance of natural objects: how many basis functions are necessary? , 1992 .

[33]  A. Fournier,et al.  A Piecewise Polynomial Approach to Shading Using Spectral Distributions , 1991 .

[34]  Image Technology , 1996, Springer Berlin Heidelberg.

[35]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[36]  Joab R Winkler,et al.  Numerical recipes in C: The art of scientific computing, second edition , 1993 .

[37]  Mark S. Drew,et al.  Natural metamers , 1992, CVGIP: Image Understanding.

[38]  C. van Trigt Smoothest reflectance functions. II. Complete results , 1990 .

[39]  J. Cohen Dependency of the spectral reflectance curves of the Munsell color chips , 1964 .

[40]  Robert Geist,et al.  COLOR REPRESENTATION IN VIRTUAL ENVIRONMENTS , 1996 .

[41]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[42]  Javier Hernández-Andrés,et al.  Linear bases for representation of natural and artificial illuminants , 1997 .

[43]  Berthold K. P. Horn Exact reproduction of colored images , 1983, Comput. Vis. Graph. Image Process..

[44]  William A. Thornton Intersections of spectral power distributions of lights that match , 1993 .

[45]  Haim Levkowitz,et al.  Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications , 1997 .

[46]  Carlos F. Borges Trichromatic approximation method for surface illumination , 1991 .

[47]  Robert J. Marks,et al.  Advanced topics in Shannon sampling and interpolation theory , 1993 .

[48]  Clifford A. Pickover,et al.  Frontiers of scientific visualization , 1994 .

[49]  D. B. Judd,et al.  Final Report of the O.S.A. Subcommittee on the Spacing of the Munsell Colors , 1943 .

[50]  W. Stiles,et al.  Counting metameric object-color stimuli using frequency-limited spectral reflectance functions , 1977 .

[51]  Bernhard Hill,et al.  Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula , 1997, TOGS.

[52]  D. Stork,et al.  The Physics and Chemistry of Color: The Fifteen Causes of Color , 1983 .

[53]  L. Maloney Evaluation of linear models of surface spectral reflectance with small numbers of parameters. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[54]  Johji Tajima Uniform color scale applications to computer graphics , 1982, Comput. Graph. Image Process..

[55]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[56]  G. Buchsbaum,et al.  Chromaticity coordinates of frequency-limited functions. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[57]  Brent Smith,et al.  Numerical methods for colorimetric calculations: Sampling density requirements , 1992 .

[58]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[59]  M. S. Peercy "Linear Color Representations in Full Spectral Rendering," Computer Graphics , 1993, International Conference on Computer Graphics and Interactive Techniques.

[60]  B A Wandell,et al.  Linear models of surface and illuminant spectra. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[61]  A. Glassner A Model for Fluorescence and Phosphorescence , 1995 .

[62]  Joe DeMaio,et al.  Introduction to Color , 1997 .

[63]  M. E. Cox Handbook of Optics , 1980 .

[64]  Shoji Tominaga,et al.  Surface Identification Using the Dichromatic Reflection Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..