Effects of temperature on performance of a compressible magnetorheological fluid damper-liquid spring suspension system

A compact compressible magnetorheological (MR) fluid damper-liquid spring (CMRFD-LS) suspension system is designed, developed and tested. The performances of the CMRFD-LS are investigated under room temperature. However, MR fluids are temperature dependent. The effect of temperature is observed in both the viscosity and the compressibility of the MR fluid. This study is to experimentally determine how temperature affects the performance of a CMRFD-LS device. A test setup is developed to measure the stiffness and energy dissipated by the system under various frequency loadings, magnetic fields and temperatures. The experimental results demonstrate that both the stiffness and the energy dissipated by the CMRFD-LS are inversely related to the temperature of the MR fluid. These changes in damper characteristics show that the compressibility of MR fluid is proportional to the fluid temperature, while the viscosity of the MR fluid is inversely related to the fluid temperature.