Study on a matter flux method for staggered essentially Lagrangian hydrodynamics on triangular grids
暂无分享,去创建一个
G. Wang | Chunsheng Feng | Shu Shi | Bo Xiao | Li Zhao | Haibo Zhao | Jinsong Bai
[1] Juan Cheng,et al. A Godunov-type tensor artificial viscosity for staggered Lagrangian hydrodynamics , 2020, J. Comput. Phys..
[2] Nathaniel R. Morgan,et al. A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics , 2019, Comput. Math. Appl..
[3] Giovanni Russo,et al. All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics , 2017, Journal of Scientific Computing.
[4] William J. Rider,et al. Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows , 2016, J. Comput. Phys..
[5] Shashank Chaturvedi,et al. Combining node-centered parallel radiation transport and higher-order multi-material cell-centered hydrodynamics methods in three-temperature radiation hydrodynamics code TRHD , 2016, Comput. Phys. Commun..
[6] Pierre-Henri Maire,et al. A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations , 2016, J. Comput. Phys..
[7] Nathaniel R. Morgan,et al. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach , 2015, J. Comput. Phys..
[8] Marc R.J. Charest,et al. A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids , 2014 .
[9] Chi-Wang Shu,et al. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates , 2014, J. Comput. Phys..
[10] Nathaniel R. Morgan,et al. A Lagrangian staggered grid Godunov-like approach for hydrodynamics , 2014, J. Comput. Phys..
[11] Nathaniel R. Morgan,et al. An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..
[12] Nathaniel R. Morgan,et al. A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .
[13] Nathaniel R. Morgan,et al. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions ☆ , 2013 .
[14] Guglielmo Scovazzi,et al. Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..
[15] Tzanio V. Kolev,et al. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics , 2012, SIAM J. Sci. Comput..
[16] Veselin Dobrev,et al. Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .
[17] G. Lanzafame,et al. Implicit integrations for SPH in semi-Lagrangian approach: Application to the accretion disc modeling in a microquasar , 2011, Comput. Phys. Commun..
[18] William J. Rider,et al. A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics , 2010 .
[19] Konstantin Lipnikov,et al. A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes , 2010, J. Comput. Phys..
[20] Tzanio V. Kolev,et al. A tensor artificial viscosity using a finite element approach , 2009, J. Comput. Phys..
[21] Yiannis Ventikos,et al. Local remeshing for large amplitude grid deformations , 2008, J. Comput. Phys..
[22] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[23] Chi-Wang Shu,et al. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..
[24] Raphaël Loubère,et al. The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics , 2006, J. Comput. Phys..
[25] T. J. Baker,et al. Adaptive modification of time evolving meshes , 2005 .
[26] Xiaoming Zheng,et al. Adaptive unstructured volume remeshing - I: The method , 2005 .
[27] Rémi Abgrall,et al. A Lagrangian Discontinuous Galerkin‐type method on unstructured meshes to solve hydrodynamics problems , 2004 .
[28] Richard Liska,et al. Comparison of Several Difference Schemes on 1D and 2D Test Problems for the Euler Equations , 2003, SIAM J. Sci. Comput..
[29] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[30] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[31] Timothy J. Baker,et al. Mesh adaptation strategies for problems in fluid dynamics , 1997 .
[32] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[33] J. Dukowicz,et al. Vorticity errors in multidimensional Lagrangian codes , 1992 .
[34] Philip M. Gresho,et al. On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .
[35] A. Caruso,et al. A collisional method to correct the mesh distortion in two-dimensional lagrangian hydrocodes , 1990 .
[36] R. A. Clark. The evolution of HOBO , 1987 .
[37] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[38] W. P. Crowley,et al. Free-lagrange methods for compressible hydrodynamics in two space dimensions , 1985 .
[39] Mark L. Wilkins,et al. Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .
[40] Jay P. Boris,et al. The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh , 1979 .
[41] J. Cole,et al. Similarity and Dimensional Methods in Mechanics , 1960 .
[42] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[43] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[44] Chi-Wang Shu,et al. Positivity-preserving Lagrangian scheme for multi-material compressible flow , 2014, J. Comput. Phys..
[45] Juan Cheng,et al. A Third Order Conservative Lagrangian Type Scheme on Curvilinear Meshes for the Compressible Euler Equations , 2008 .
[46] Thomas J. R. Hughes,et al. Stabilized shock hydrodynamics: I. A Lagrangian method , 2007 .
[47] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[48] A. A. Amsden,et al. FLUID DYNAMICS. A LASL Monograph. , 1971 .