Primitive idempotents in central simple algebras over Fq(t) with an application to coding theory

We consider the algorithmic problem of computing a primitive idempotent of a central simple algebra over the field of rational functions over a finite field. The algebra is given by a set of structure constants. The problem is reduced to the computation of a division algebra Brauer equivalent to the central simple algebra. This division algebra is constructed as a cyclic algebra, once the Hasse invariants have been computed. We give an application to skew constacyclic convolutional codes.

[1]  F. J. Lobillo,et al.  A Sugiyama-Like Decoding Algorithm for Convolutional Codes , 2016, IEEE Transactions on Information Theory.

[2]  F. J. Lobillo,et al.  Peterson–Gorenstein–Zierler algorithm for skew RS codes , 2017, ArXiv.

[3]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[4]  Lajos Rónyai,et al.  Explicit equivalence of quadratic forms over Fq(t) , 2019, Finite Fields Their Appl..

[5]  Johanna Weiss,et al.  Arithmetique Des Algebres De Quaternions , 2016 .

[6]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[7]  W. Marsden I and J , 2012 .

[8]  Philippe Gille,et al.  Central Simple Algebras and Galois Cohomology , 2017 .

[9]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[10]  F. J. Lobillo,et al.  Computing the bound of an Ore polynomial. Applications to factorization , 2019, J. Symb. Comput..

[11]  G. Ivanyos Algorithms for algebras over global fields , 1996 .

[12]  Daqing Wan,et al.  Generators and irreducible polynomials over finite fields , 1997, Math. Comput..

[13]  Lajos Rónyai,et al.  Splitting full matrix algebras over algebraic number fields , 2011, ArXiv.

[14]  Division algebras and maximal orders for given invariants , 2016 .

[15]  David Sevilla,et al.  Unirational fields of transcendence degree one and functional decomposition , 2001, ISSAC '01.

[16]  F. J. Lobillo,et al.  A New Perspective of Cyclicity in Convolutional Codes , 2016, IEEE Transactions on Information Theory.

[17]  Gábor Ivanyos,et al.  Finding the radical of an algebra of linear transformations , 1997 .