A multilevel sparse kernel-based stochastic collocation finite element method for elliptic problems with random coefficients

Abstract A new stochastic collocation finite element method is proposed for the numerical solution of elliptic boundary value problems (BVP) with random coefficients, assuming that the randomness is well-approximated by a finite number of random variables with given probability distributions. The proposed method consists of a finite element approximation in physical space, along with a stochastic collocation quadrature approach utilizing the recent Multilevel Sparse Kernel-Based Interpolation (MuSIK) technique (Georgoulis et al., 2013). MuSIK is based on a multilevel sparse grid-type algorithm with the basis functions consisting of directionally anisotropic Gaussian radial basis functions (kernels) placed at directionally-uniform grid-points. We prove that MuSIK is interpolatory at these nodes, and, therefore, can be naturally used to define a quadrature scheme. Numerical examples are also presented, assessing the performance of the new algorithm in the context of high-dimensional stochastic collocation finite element methods.

[1]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[2]  Jochen Garcke,et al.  Sparse Grids in a Nutshell , 2012 .

[3]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[4]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[5]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[6]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[9]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[10]  Raul Tempone,et al.  Multi-Index Stochastic Collocation for random PDEs , 2015, 1508.07467.

[11]  M. Loève Probability Theory II , 1978 .

[12]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[13]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[14]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[15]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[16]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[17]  Christoph Schwab,et al.  First order k-th moment finite element analysis of nonlinear operator equations with stochastic data , 2013, Math. Comput..

[18]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[19]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[20]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[21]  Michael Griebel,et al.  Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences , 1998, Computing.

[22]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[23]  Endre Süli,et al.  Sparse finite element approximation of high-dimensional transport-dominated diffusion problems , 2008 .

[24]  Michel Loève,et al.  Probability Theory I , 1977 .

[25]  Alexey Chernov,et al.  Sparse polynomial approximation in positive order Sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading , 2012 .

[26]  F. J. Narcowich,et al.  Multilevel Interpolation and Approximation , 1999 .

[27]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[28]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[29]  Claude Jeffrey Gittelson,et al.  An adaptive stochastic Galerkin method for random elliptic operators , 2013, Math. Comput..

[30]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[31]  Claude Jeffrey Gittelson,et al.  Convergence Rates of Multilevel and Sparse Tensor Approximations for a Random Elliptic PDE , 2013, SIAM J. Numer. Anal..

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  Catherine Elizabeth Powell,et al.  Energy Norm A Posteriori Error Estimation for Parametric Operator Equations , 2014, SIAM J. Sci. Comput..

[34]  R. Tempone,et al.  A sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2006 .

[35]  Klaus Ritter,et al.  Multilevel Monte Carlo Approximation of Distribution Functions and Densities , 2015, SIAM/ASA J. Uncertain. Quantification.

[36]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[37]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[38]  Fazli Subhan,et al.  Multilevel Sparse Kernel-Based Interpolation , 2012, SIAM J. Sci. Comput..

[39]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[40]  Sebastian Martin Ruiz,et al.  80.52 An algebraic identity leading to Wilson’s theorem , 1996, The Mathematical Gazette.

[41]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[42]  Christoph Schwab,et al.  N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs , 2014 .

[43]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[44]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[45]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[46]  Fabio Nobile,et al.  Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .

[47]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[48]  Juan Galvis,et al.  Approximating Infinity-Dimensional Stochastic Darcy's Equations without Uniform Ellipticity , 2009, SIAM J. Numer. Anal..

[49]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[50]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[51]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[52]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[53]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[54]  F. Delvos d-Variate Boolean interpolation , 1982 .

[55]  Armin Iske,et al.  Multilevel scattered data approximation by adaptive domain decomposition , 2005, Numerical Algorithms.

[56]  Jeremy Levesley,et al.  Error bounds for anisotropic RBF interpolation , 2010, J. Approx. Theory.