Blur Identification and Image Restoration Based on Evolutionary Multiple Object Segmentation for Digital Auto-focusing

This paper presents a digital auto-focusing algorithm based on evolutionary multiple object segmentation method. Robust object segmentation can be conducted by the evolutionary algorithm on an image that has several differently out-of-focused objects. After segmentation is completed, point spread functions (PSFs) are estimated at differently out-of-focused objects and spatially adaptive image restorations are applied according to the estimated PSFs. Experimental results show that the proposed auto-focusing algorithm can efficiently remove the space-variant out-of-focus blur from the image with multiple, blurred objects.