Sensing by bacterial regulatory systems in host and non-host environments

Free-living organisms have the ability to gauge their surroundings and modify their gene expression patterns in ways that help them cope with new environments. Here we discuss the physiological significance of recent reports describing the ability of the Salmonella typhimurium PhoP/PhoQ two-component system to recognize and respond to host-derived antimicrobial peptides.

[1]  C. Waldburger,et al.  Comparison of the Pseudomonas aeruginosa and Escherichia coli PhoQ sensor domains: evidence for distinct mechanisms of signal detection. , 2001, The Journal of biological chemistry.

[2]  V. DiRita,et al.  From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae. , 2003, Current opinion in microbiology.

[3]  T. Silhavy,et al.  LrhA Regulates rpoS Translation in Response to the Rcs Phosphorelay System in Escherichia coli , 2006, Journal of bacteriology.

[4]  S. Miller,et al.  Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. , 2001, Microbes and infection.

[5]  N. Majdalani,et al.  The Rcs phosphorelay: a complex signal transduction system. , 2005, Annual review of microbiology.

[6]  E. Groisman,et al.  Activation of the RcsC/YojN/RcsB phosphorelay system attenuates Salmonella virulence , 2004, Molecular microbiology.

[7]  E. Groisman,et al.  The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica , 2005, Molecular microbiology.

[8]  S. Falkow,et al.  OmpR Regulates the Two-Component System SsrA-SsrB in Salmonella Pathogenicity Island 2 , 2000, Journal of bacteriology.

[9]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[10]  M. Chou,et al.  Enteric Salmonella Infection Inhibits Paneth Cell Antimicrobial Peptide Expression , 2003, Infection and Immunity.

[11]  J. Casadesús,et al.  Virulence attenuation in Salmonella enterica rcsC mutants with constitutive activation of the Rcs system. , 2005, Microbiology.

[12]  T. Latifi,et al.  Transcriptional Regulation of the 4-Amino-4-deoxy-L-arabinose Biosynthetic Genes in Yersinia pestis* , 2005, Journal of Biological Chemistry.

[13]  T. Welch,et al.  Identification of a regulatory protein required for pressure‐responsive gene expression in the deep‐sea bacterium Photobacterium species strain SS9 , 1998, Molecular microbiology.

[14]  S. Miller,et al.  Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. , 1999, Science.

[15]  H. Le Moual,et al.  Characterization of the Catalytic Activities of the PhoQ Histidine Protein Kinase of Salmonella entericaSerovar Typhimurium , 2001, Journal of bacteriology.

[16]  C. Beuzón,et al.  A role for the PhoP/Q regulon in inhibition of fusion between lysosomes and Salmonella‐containing vacuoles in macrophages , 2001, Cellular microbiology.

[17]  Rachel E. Klevit,et al.  Recognition of Antimicrobial Peptides by a Bacterial Sensor Kinase , 2005, Cell.

[18]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[19]  M. E. Castelli,et al.  The H Box-harboring Domain Is Key to the Function of the Salmonella enterica PhoQ Mg2+-sensor in the Recognition of Its Partner PhoP* , 2003, Journal of Biological Chemistry.

[20]  M. Woodward,et al.  Role of the Two-Component Regulator CpxAR in the Virulence of Salmonella enterica Serotype Typhimurium , 2004, Infection and Immunity.

[21]  Jeffrey Green,et al.  PhoP-Responsive Expression of the Salmonella enterica Serovar Typhimurium slyA Gene , 2003, Journal of bacteriology.

[22]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[23]  Igor Zwir,et al.  Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Samuel I. Miller,et al.  Metal bridges between the PhoQ sensor domain and the membrane regulate transmembrane signaling. , 2006, Journal of molecular biology.

[25]  E. Groisman,et al.  Two-component regulatory systems can interact to process multiple environmental signals , 1996, Journal of bacteriology.

[26]  J. Casadesús,et al.  Repression of the RcsC‐YojN‐RcsB phosphorelay by the IgaA protein is a requisite for Salmonella virulence , 2004, Molecular microbiology.

[27]  S. Miller,et al.  Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Haidaris,et al.  Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Samuel I. Miller,et al.  Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides , 2003, Molecular microbiology.

[30]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA , 2001 .

[31]  B. Finlay,et al.  Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Eduardo A. Groisman,et al.  Transcriptional Control of the Antimicrobial Peptide Resistance ugtL Gene by the Salmonella PhoP and SlyA Regulatory Proteins* , 2004, Journal of Biological Chemistry.

[33]  Samuel I. Miller,et al.  Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides , 1998, Cell.

[34]  E. Groisman,et al.  The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival , 1997, The EMBO journal.

[35]  Samuel I. Miller,et al.  A PhoP-Regulated Outer Membrane Protease of Salmonella enterica Serovar Typhimurium Promotes Resistance to Alpha-Helical Antimicrobial Peptides , 2000, Journal of bacteriology.

[36]  Eduardo A. Groisman,et al.  The Pleiotropic Two-Component Regulatory System PhoP-PhoQ , 2001, Journal of bacteriology.

[37]  Hirotada Mori,et al.  Identification and Molecular Characterization of the Mg2+ Stimulon of Escherichia coli , 2003, Journal of bacteriology.

[38]  A. Tiérrez,et al.  The Salmonella Membrane Protein IgaA Modulates the Activity of the RcsC-YojN-RcsB and PhoP-PhoQ Regulons , 2004, Journal of bacteriology.

[39]  E. Nester,et al.  Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Gholson J. Lyon,et al.  Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria , 2004, Peptides.

[41]  S. Miller,et al.  A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells , 1993, Journal of bacteriology.

[42]  E. Groisman,et al.  Molecular genetic analysis of the Escherichia coli phoP locus , 1992, Journal of bacteriology.

[43]  Sangpen Chamnongpol,et al.  Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica. , 2003, Journal of molecular biology.

[44]  E. Groisman,et al.  Salmonella typhimurium phoP virulence gene is a transcriptional regulator. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Groisman,et al.  A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. , 1989, Science.

[46]  R. Hancock,et al.  Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa , 2003, Molecular microbiology.

[47]  P. Rodríguez-Palenzuela,et al.  The Erwinia chrysanthemi phoP‐phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue , 2003, Molecular microbiology.

[48]  E. Groisman,et al.  A Salmonella virulence protein that inhibits cellular trafficking , 1999, The EMBO journal.

[49]  O. Zaborina,et al.  Recognition of Host Immune Activation by Pseudomonas aeruginosa , 2005, Science.

[50]  E. Groisman,et al.  Regulation of polymyxin resistance and adaptation to low-Mg2+ environments , 1997, Journal of bacteriology.

[51]  E. Groisman,et al.  A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica , 2000, Molecular microbiology.

[52]  T. Latifi,et al.  Signal-dependent Requirement for the Co-activator Protein RcsA in Transcription of the RcsB-regulated ugd Gene* , 2003, Journal of Biological Chemistry.

[53]  John Turk,et al.  PhoP‐regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B , 2004, Molecular microbiology.

[54]  S. Falkow,et al.  Mig‐14 is an inner membrane‐associated protein that promotes Salmonella typhimurium resistance to CRAMP, survival within activated macrophages and persistent infection , 2004, Molecular microbiology.

[55]  K. Young,et al.  β-Lactam induction of colanic acid gene expression in Escherichia coli , 2003 .

[56]  Samuel I. Miller,et al.  mig-14 Is a Salmonella Gene That Plays a Role in Bacterial Resistance to Antimicrobial Peptides , 2002, Journal of bacteriology.

[57]  E. Groisman The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  Stanley Falkow,et al.  virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance , 2003, Molecular microbiology.

[59]  R. Curtiss,et al.  Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic , 1987, Infection and immunity.

[60]  B. Finlay,et al.  Vacuole Acidification Is Not Required for Survival ofSalmonella enterica Serovar Typhimurium within Cultured Macrophages and Epithelial Cells , 2000, Infection and Immunity.

[61]  S. Falkow,et al.  Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Samuel I. Miller,et al.  Visualization of vacuolar acidification-induced transcription of genes of pathogens inside macrophages. , 2005, Molecular biology of the cell.

[63]  A. Danchin,et al.  The PhoP-PhoQ Two-Component Regulatory System of Photorhabdus luminescens Is Essential for Virulence in Insects , 2004, Journal of bacteriology.

[64]  S. Miller,et al.  Further characterization of the PhoP regulon: identification of new PhoP-activated virulence loci , 1994, Infection and immunity.

[65]  S. Falkow,et al.  Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes , 1999, Nature.

[66]  J. Vanderleyden,et al.  Azotobacter vinelandii: a Pseudomonas in disguise? , 2004, Microbiology.

[67]  R. B. Merrifield,et al.  All-D amino acid-containing channel-forming antibiotic peptides. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[68]  E. Groisman,et al.  A small protein that mediates the activation of a two‐component system by another two‐component system , 2000, The EMBO journal.

[69]  J. Lavigne,et al.  Requirement of MgtC for Brucella suis Intramacrophage Growth: a Potential Mechanism Shared by Salmonella enterica and Mycobacterium tuberculosis for Adaptation to a Low-Mg2+ Environment , 2005, Infection and Immunity.

[70]  E. Groisman,et al.  Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes , 1996, Journal of bacteriology.

[71]  Ruifu Yang,et al.  Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. , 2005, FEMS microbiology letters.

[72]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[73]  Eduardo A. Groisman,et al.  Role of Nonhost Environments in the Lifestyles of Salmonella and Escherichia coli , 2003, Applied and Environmental Microbiology.

[74]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA. , 2001, Molecular microbiology.

[75]  R. Utsumi,et al.  Isolation and Molecular Characterization of the Locked-on Mutant of Mg2+ Sensor PhoQ in Escherichia coli , 2005, Bioscience, biotechnology, and biochemistry.

[76]  B. Finlay,et al.  Characterization of the micro‐environment of Salmonella typhimurium–containing vacuoles within MDCK epithelial cells , 1992, Molecular microbiology.

[77]  M. Vaara,et al.  Agents that increase the permeability of the outer membrane. , 1992, Microbiological reviews.

[78]  R. Hancock,et al.  The role of cationic antimicrobial peptides in innate host defences. , 2000, Trends in microbiology.

[79]  E. Groisman,et al.  Mg2+ as an Extracellular Signal: Environmental Regulation of Salmonella Virulence , 1996, Cell.

[80]  J. Galán,et al.  Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[81]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[82]  E. Groisman,et al.  Mg2+ homeostasis and avoidance of metal toxicity , 2002, Molecular microbiology.

[83]  E. Groisman,et al.  The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri , 2000, Cellular microbiology.

[84]  R. L. Lucas,et al.  Co‐ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression , 1996, Molecular microbiology.