Local image region description using orthogonal symmetric local ternary pattern

Abstract Local image description is a key issue for local features related tasks in computer vision. A good descriptor should achieve two competing goals which are high-quality description and low computational complexity. In this paper, we propose a novel operator called orthogonal symmetric local ternary pattern (OS-LTP), achieving robustness against noise interference and discriminative ability for describing texture structure. Then, based on the proposed OS-LTP operator, we introduce a new descriptor, named weighted orthogonal symmetric local ternary pattern (WOS-LTP). Unlike traditional descriptors, the WOS-LTP descriptor is constructed by using the OS-LTP variance of the local region as an adaptive weight to adjust the contribution of the OS-LTP code in histogram calculation. Extensive experimental results demonstrate the effectiveness and efficiency of the new descriptor compared with existing state-of-the-art descriptors.

[1]  Marko Heikkilä,et al.  A texture-based method for modeling the background and detecting moving objects , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Zhenhua Guo,et al.  Hierarchical multiscale LBP for face and palmprint recognition , 2010, 2010 IEEE International Conference on Image Processing.

[4]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Young Sam Lee,et al.  Real-time single camera SLAM using fiducial markers , 2009, 2009 ICCAS-SICE.

[6]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[7]  Tardi Tjahjadi,et al.  Clique descriptor of affine invariant regions for robust wide baseline image matching , 2010, Pattern Recognit..

[8]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[9]  Xin Yang,et al.  Large-scale EMM identification based on geometry-constrained visual word correspondence voting , 2011, ICMR.

[10]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[11]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[12]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Raj Gupta,et al.  Robust order-based methods for feature description , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[17]  Guizhong Liu,et al.  An improvement to the SIFT descriptor for image representation and matching , 2013, Pattern Recognit. Lett..

[18]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[19]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[20]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[23]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[24]  Mu Zhi A Robust Method for Local Image Feature Region Description , 2011 .

[25]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[27]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[28]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Xin Yang,et al.  Local difference binary for ultrafast and distinctive feature description. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[30]  Liming Chen,et al.  Image region description using orthogonal combination of local binary patterns enhanced with color information , 2013, Pattern Recognit..

[31]  Gang Hua,et al.  Discriminative Learning of Local Image Descriptors , 1990, IEEE Transactions on Pattern Analysis and Machine Intelligence.