Of Genes and Genomes: Mosquito Evolution and Diversity.

Mosquitoes are widely despised for their exasperating buzzing and irritating bites, and more poignantly because, during blood-feeding, females may transmit pathogens that cause devastating diseases. However, the ability to transmit such viruses, filarial worms, or malaria parasites varies greatly amongst the ∼3500 recognised mosquito species. Applying omics technologies to sample this diversity and explore the biology underlying these variations is bringing increasingly greater resolution that enhances our understanding of mosquito evolution. Here we review the current status of mosquito omics, or 'mozomics', resources and recent advances in their applications to characterise mosquito biology and evolution, with a focus on the intersection of evolutionary and functional genomics to understand the putative links between gene and genome dynamism and mosquito diversity.

[1]  G. Christophides,et al.  Immune resistance and tolerance strategies in malaria vector and non-vector mosquitoes , 2017, Parasites & Vectors.

[2]  M. Sharakhova,et al.  Insights into the Preservation of the Homomorphic Sex-Determining Chromosome of Aedes aegypti from the Discovery of a Male-Biased Gene Tightly Linked to the M-Locus , 2014, Genome biology and evolution.

[3]  Claire Fraser-Liggett,et al.  Sequencing of Culex quinquefasciatus Establishes a Platform for Mosquito Comparative Genomics , 2010, Science.

[4]  P. Papathanos,et al.  Cross-Species Y Chromosome Function Between Malaria Vectors of the Anopheles gambiae Species Complex , 2017, Genetics.

[5]  F. C. Kafatos,et al.  Widespread Divergence Between Incipient Anopheles gambiae Species Revealed by Whole Genome Sequences , 2010, Science.

[6]  Shui-sen Zhou,et al.  Analysis of microRNA profile of Anopheles sinensis by deep sequencing and bioinformatic approaches , 2018, Parasites & Vectors.

[7]  G. Dimopoulos,et al.  Aedes aegypti Molecular Responses to Zika Virus: Modulation of Infection by the Toll and Jak/Stat Immune Pathways and Virus Host Factors , 2017, Front. Microbiol..

[8]  A. N. Naumenko,et al.  Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome , 2018, BMC Genomics.

[9]  Luay Nakhleh,et al.  Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis , 2016, Molecular ecology.

[10]  G. Dimopoulos,et al.  Engineered Aedes aegypti JAK/STAT Pathway-Mediated Immunity to Dengue Virus , 2017, PLoS neglected tropical diseases.

[11]  S. Liang,et al.  Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection , 2017, Parasites & Vectors.

[12]  D. Denlinger,et al.  Evolutionary transition from blood feeding to obligate nonbiting in a mosquito , 2017, Proceedings of the National Academy of Sciences.

[13]  Wojtek S. Kuklinski,et al.  Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals , 2015, BMC Genomics.

[14]  M. Sharakhova,et al.  The Development of Cytogenetic Maps for Malaria Mosquitoes , 2018, Insects.

[15]  Y. Qi,et al.  GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi , 2016, eLife.

[16]  K. Vernick,et al.  Highly focused transcriptional response of Anopheles coluzzii to O’nyong nyong arbovirus during the primary midgut infection , 2018, BMC Genomics.

[17]  M. Vignuzzi,et al.  Virus-derived DNA drives mosquito vector tolerance to arboviral infection , 2016, Nature Communications.

[18]  A. Crisanti,et al.  The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs , 2015, BMC Genomics.

[19]  J. Ribeiro,et al.  A deep insight into the male and female sialotranscriptome of adult Culex tarsalis mosquitoes. , 2018, Insect biochemistry and molecular biology.

[20]  P. Miesen,et al.  PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes , 2016, PLoS pathogens.

[21]  Timothy B. Stockwell,et al.  Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation , 2017, bioRxiv.

[22]  Patrick T. Dolan,et al.  The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the Aedes aegypti Genome , 2017, Current Biology.

[23]  D. Serre,et al.  Whole‐genome sequencing reveals absence of recent gene flow and separate demographic histories for Anopheles punctulatus mosquitoes in Papua New Guinea , 2015, Molecular ecology.

[24]  M. Sharakhova,et al.  Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes , 2011, Parasites & Vectors.

[25]  E. Krzywińska,et al.  Dosage Compensation in the African Malaria Mosquito Anopheles gambiae , 2016, Genome biology and evolution.

[26]  Alistair Miles,et al.  Genetic diversity of the African malaria vector Anopheles gambiae , 2017, Nature.

[27]  Evgeny M. Zdobnov,et al.  Genome Sequence of Aedes aegypti, a Major Arbovirus Vector , 2007, Science.

[28]  E. Pondeville,et al.  Evolution of sexually-transferred steroids in Anopheles mosquitoes , 2018, bioRxiv.

[29]  B. Cassone,et al.  Comparative Transcriptomics of Malaria Mosquito Testes: Function, Evolution, and Linkage , 2017, G3: Genes, Genomes, Genetics.

[30]  K. White,et al.  Regulation of Gene Expression Patterns in Mosquito Reproduction , 2015, PLoS genetics.

[31]  Christopher J. Mitchell,et al.  Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes , 2017, Genome research.

[32]  Robert M. Waterhouse,et al.  Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens , 2010, Science.

[33]  Xiaofang Jiang,et al.  Complete Dosage Compensation in Anopheles stephensi and the Evolution of Sex-Biased Genes in Mosquitoes , 2015, Genome biology and evolution.

[34]  Fedor V. Karginov,et al.  Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti , 2017, Proceedings of the National Academy of Sciences.

[35]  G. Christophides,et al.  Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes , 2017, PLoS pathogens.

[36]  E. Krzywińska,et al.  A maleness gene in the malaria mosquito Anopheles gambiae , 2016, Science.

[37]  Lei Ma,et al.  Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites , 2014, BMC Genomics.

[38]  Punita Juneja,et al.  Alternative patterns of sex chromosome differentiation in Aedes aegypti (L) , 2017, BMC Genomics.

[39]  R. Ignell,et al.  Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito , 2017, BMC Genomics.

[40]  Robert M. Waterhouse,et al.  Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes , 2016, bioRxiv.

[41]  Robert M MacCallum,et al.  An expression map for Anopheles gambiae , 2011, BMC Genomics.

[42]  F. Catteruccia,et al.  Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes , 2015, Science.

[43]  Rajnikant Dixit,et al.  Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi. , 2016, Gene.

[44]  K. Michel,et al.  CLIPB8 is part of the prophenoloxidase activation system in Anopheles gambiae mosquitoes. , 2016, Insect biochemistry and molecular biology.

[45]  Robert M. Waterhouse,et al.  Evolutionary Dynamics of Abundant Stop Codon Readthrough , 2016, Molecular biology and evolution.

[46]  M. Kirkpatrick,et al.  Extensive Genetic Differentiation between Homomorphic Sex Chromosomes in the Mosquito Vector, Aedes aegypti , 2016, bioRxiv.

[47]  K. Etebari,et al.  A comparative analysis of corpora allata-corpora cardiaca microRNA repertoires revealed significant changes during mosquito metamorphosis. , 2018, Insect biochemistry and molecular biology.

[48]  Ziheng Yang,et al.  Coalescent Analysis of Phylogenomic Data Confidently Resolves the Species Relationships in the Anopheles gambiae Species Complex , 2018, Molecular biology and evolution.

[49]  B. Cassone,et al.  Distributed under Creative Commons Cc-by 4.0 , 2022 .

[50]  G. Christophides,et al.  Anopheles gambiae Blood Feeding Initiates an Anticipatory Defense Response to Plasmodium berghei , 2014, Journal of Innate Immunity.

[51]  Robert M. Waterhouse,et al.  Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes , 2007, Science.

[52]  Christina A. Cuomo,et al.  Contrasting host–pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes , 2015, Nature Communications.

[53]  Miguel A. Saldaña,et al.  Zika virus alters the microRNA expression profile and elicits an RNAi response in Aedes aegypti mosquitoes , 2017, PLoS neglected tropical diseases.

[54]  Sergey Koren,et al.  Leveraging evolutionary relationships to improve Anopheles genome assemblies , 2018, bioRxiv.

[55]  Jianyong Li,et al.  The antenna transcriptome changes in mosquito Anopheles sinensis, pre- and post- blood meal , 2017, PloS one.

[56]  Xiaofang Jiang,et al.  Extensive introgression in a malaria vector species complex revealed by phylogenomics , 2015, Science.

[57]  M. V. van Oers,et al.  Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes , 2016, Journal of Virology.

[58]  A. James,et al.  Maternal Germline-Specific Genes in the Asian Malaria Mosquito Anopheles stephensi: Characterization and Application for Disease Control , 2014, G3: Genes, Genomes, Genetics.

[59]  Matthew W. Hahn,et al.  Powerful methods for detecting introgressed regions from population genomic data , 2016, Molecular ecology.

[60]  Adam M. Jenkins,et al.  Evolution of an Epigenetic Gene Ensemble within the Genus Anopheles , 2015, Genome biology and evolution.

[61]  Arjun Bhutkar,et al.  Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes , 2008, Genetics.

[62]  M. Salvemini,et al.  Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus , 2017, BMC Genomics.

[63]  G. Birrell,et al.  Proteomics of Anopheles Vectors of Malaria. , 2018, Trends in parasitology.

[64]  Monica F. Poelchau,et al.  Global Transcriptional Dynamics of Diapause Induction in Non-Blood-Fed and Blood-Fed Aedes albopictus , 2015, PLoS neglected tropical diseases.

[65]  Gregory R. Madey,et al.  VectorBase: a data resource for invertebrate vector genomics , 2008, Nucleic Acids Res..

[66]  Robert M. Waterhouse,et al.  Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex , 2015, BMC Genomics.

[67]  M. Wolfner,et al.  Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti , 2016, PLoS neglected tropical diseases.

[68]  D. Lawson,et al.  A draft genome sequence of an invasive mosquito: an Italian Aedes albopictus , 2015, Pathogens and global health.

[69]  Andrew G. Clark,et al.  Conundrum of jumbled mosquito genomes , 2015, Science.

[70]  J. Biedler,et al.  A male-determining factor in the mosquito Aedes aegypti , 2015, Science.

[71]  Xiaofang Jiang,et al.  Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi , 2014, Genome Biology.

[72]  S. Behura,et al.  The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape , 2017, BMC Genomics.

[73]  M. Wolfner,et al.  Male contributions during mating increase female survival in the disease vector mosquito Aedes aegypti. , 2018, Journal of insect physiology.

[75]  Miguel A. Saldaña,et al.  Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection , 2017, mSphere.

[76]  A. Ivens,et al.  Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs , 2016, PLoS neglected tropical diseases.

[77]  Mark Gerstein,et al.  The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors , 2017, Genetics.

[78]  F. Tripet,et al.  Experimental Swap of Anopheles gambiae's Assortative Mating Preferences Demonstrates Key Role of X-Chromosome Divergence Island in Incipient Sympatric Speciation , 2015, PLoS genetics.

[79]  J. Ribeiro,et al.  Anopheline salivary protein genes and gene families: an evolutionary overview after the whole genome sequence of sixteen Anopheles species , 2017, BMC Genomics.

[80]  Scott J. Emrich,et al.  The Evolution of the Anopheles 16 Genomes Project , 2013, G3: Genes, Genomes, Genetics.

[81]  E. Krzywińska,et al.  The sex locus is tightly linked to factors conferring sex-specific lethal effects in the mosquito Aedes aegypti , 2016, Heredity.

[82]  Gloria I. Giraldo-Calderón,et al.  Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression , 2017, BMC Evolutionary Biology.

[83]  Hao Zhang,et al.  Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution , 2015, Proceedings of the National Academy of Sciences.

[84]  Faye D. Schilkey,et al.  Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus , 2017, PloS one.

[85]  Samuel H. Lewis,et al.  Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine , 2016, Genome biology and evolution.

[86]  Robert M. Waterhouse,et al.  The Aedes aegypti genome: a comparative perspective , 2008, Insect molecular biology.

[87]  John Vontas,et al.  The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  J. Ribeiro,et al.  A Deep Insight into the Sialome of Male and Female Aedes aegypti Mosquitoes , 2016, PloS one.

[89]  Lauren A. Assour,et al.  Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes , 2016, Proceedings of the National Academy of Sciences.

[90]  Monica C Munoz-Torres,et al.  Web Apollo: a web-based genomic annotation editing platform , 2013, Genome Biology.

[91]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[92]  Z. Tu,et al.  Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus , 2017, BMC Genomics.

[93]  Patrick T. Dolan,et al.  The diversity, structure and function of heritable adaptive immunity sequences in the Aedes aegypti genome , 2017, bioRxiv.

[94]  Sergey Koren,et al.  Improved reference genome of Aedes aegypti informs arbovirus vector control , 2018, Nature.

[95]  John C. Tan,et al.  Systems genetic analysis of inversion polymorphisms in the malaria mosquito Anopheles gambiae , 2018, Proceedings of the National Academy of Sciences.

[96]  James E. Allen,et al.  Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes , 2014, Science.

[97]  Differential gene expression in Anopheles stephensi following infection with drug-resistant Plasmodium yoelii , 2017, Parasites & Vectors.

[98]  E. Levashina,et al.  The role of microRNAs in Anopheles biology—an emerging research field , 2017, Parasite immunology.

[99]  M. Riehle,et al.  Population Genetics of Anopheles coluzzii Immune Pathways and Genes , 2014, G3: Genes, Genomes, Genetics.

[100]  A. Burt,et al.  A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes , 2018, Nature Biotechnology.

[101]  A Peptide Signaling System that Rapidly Enforces Paternity in the Aedes aegypti Mosquito , 2017, Current Biology.

[102]  I. Sharakhov,et al.  Increased production of piRNAs from euchromatic clusters and genes in Anopheles gambiae compared with Drosophilamelanogaster , 2015, Epigenetics & Chromatin.

[103]  A. Koffi,et al.  Adaptive deletion in resistance gene duplications in the malaria vector Anopheles gambiae , 2018, Evolutionary applications.

[104]  Xianmiao Liu,et al.  Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis , 2015, PloS one.

[105]  Xiaofang Jiang,et al.  The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles , 2016, G3: Genes, Genomes, Genetics.

[106]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[107]  M. Coetzee,et al.  A new malaria vector mosquito in South Africa , 2017, Scientific Reports.

[108]  C. Whittle,et al.  Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti) , 2017, Genetics.

[109]  E. Levashina,et al.  MicroRNA Tissue Atlas of the Malaria Mosquito Anopheles gambiae , 2017, G3: Genes, Genomes, Genetics.

[110]  Neva C. Durand,et al.  De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds , 2016, Science.

[111]  J. Hemingway,et al.  Genomic analysis of detoxification genes in the mosquito Aedes aegypti. , 2008, Insect biochemistry and molecular biology.

[112]  D. Fonseca,et al.  Characterization of the doublesex gene within the Culex pipiens complex suggests regulatory plasticity at the base of the mosquito sex determination cascade , 2015, BMC Evolutionary Biology.

[113]  Punita Juneja,et al.  Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response , 2015, PLoS pathogens.

[114]  Characterization of Chemosensory Responses on the Labellum of the Malaria Vector Mosquito, Anopheles coluzzii , 2018, Scientific Reports.

[115]  N. Besansky,et al.  Transcriptomic differences between euryhaline and stenohaline malaria vector sibling species in response to salinity stress , 2016, Molecular ecology.

[116]  R. J. Pitts,et al.  Divergent and Conserved Elements Comprise the Chemoreceptive Repertoire of the Nonblood-Feeding Mosquito Toxorhynchites amboinensis , 2014, Genome biology and evolution.

[117]  R. J. Pitts,et al.  Disease vectors in the era of next generation sequencing , 2016, Genome Biology.

[118]  F. Jiggins,et al.  piRNA pathway is not required for antiviral defense in Drosophila melanogaster , 2016, Proceedings of the National Academy of Sciences.

[119]  Francisco Prosdocimi,et al.  The Genome of Anopheles darlingi, the main neotropical malaria vector , 2013, Nucleic acids research.

[120]  M. Bonizzoni,et al.  Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? , 2017, Current opinion in insect science.

[121]  F. Catteruccia,et al.  Characterization of Anopheles gambiae Transglutaminase 3 (AgTG3) and Its Native Substrate Plugin* , 2013, The Journal of Biological Chemistry.

[122]  A. Kohl,et al.  Characterization of the Zika virus induced small RNA response in Aedes aegypti cells , 2017, PLoS neglected tropical diseases.

[123]  Sandra Gesing,et al.  VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases , 2014, Nucleic Acids Res..