Propriedades físicas de um Latossolo Vermelho distrófico cultivado e sob mata nativa

The understanding and quantification of the impact caused by soil use and management on the physical soil quality are fundamental for the development of sustainable agricultural systems. The objective of this research was to quantify some physical soil properties to evaluate the physical quality of a dystrophic Red Latosol (Rhodic Ferralsol) in the northwest of the State of Parana, Brazil. Undisturbed soil samples were collected from two contiguous areas on an Experimental Farm of the State University of Maringa. One area was cultivated with annual crops under conventional tillage (disk plow and harrowing) and the other under native forest (semidecidual seasonal forest). The evaluated physical soil attributes were soil porosity and bulk density, soil water retention curve, soil resistance curve, and the least limiting water range. Results indicated significantly higher values of bulk density and lower values of soil porosity in the cultivated area. The soil water retention curve was not influenced by the soil use system, but was negatively influenced by bulk density. The soil resistance curve was influenced by the soil use system, evidenced by high values of soil resistance to root penetration under increasing drought in the cultivated soil. The least limiting water range was significantly smaller in the cultivated soil owing to the soil resistance to root penetration and air-filled porosity, which determined the lower and upper limits of soil water availability with bulk density increase. In the soil under native forest, the least limiting water range was equal to the water availability determined by the field capacity and the permanent wilting point. Soil compaction in the cultivated soil induced changes in the soil porous system, which were described by lower values of the least limiting water range than in virgin soil.

[1]  Craig F. Drury,et al.  Indicators of good soil physical quality: density and storage parameters , 2002 .

[2]  A. Hartemink Soil chemical and physical properties as indicators of sustainable land management under sugar cane in Papua New Guinea , 1998 .

[3]  C. A. Tormena,et al.  Dinâmica da resistência à penetração de um solo sob plantio direto , 1996 .

[4]  W. J. Busscher,et al.  ADJUSTMENT OF FLAT-TIPPED PENETROMETER RESISTANCE DATA TO A COMMON WATER CONTENT , 1990 .

[5]  J. Archer,et al.  THE RELATION BETWEEN BULK DENSITY, AVAILABLE WATER CAPACITY, AND AIR CAPACITY OF SOILS , 1972 .

[6]  D. L. Dindal,et al.  Cattle and sheep grazing effects on soil organisms, fertility and compaction in a smooth‐stalked meadowgrass‐dominant white clover sward , 1995 .

[7]  L. Souza,et al.  Alteração de propriedades físicas e atividade microbiana de um latossolo amarelo álico após o cultivo com fruteiras perenes e mandioca , 1999 .

[8]  A. Thomasson TOWARDS AN OBJECTIVE CLASSIFICATION OF SOIL STRUCTURE , 1978 .

[9]  G. Topp,et al.  THE DETERMINATION OF SOIL-WATER DESORPTION CURVES FOR SOIL CORES , 1979 .

[10]  R. Dalal,et al.  Soil organic matter in rainfed cropping systems of the Australian cereal belt , 2001 .

[11]  Rainer Horn,et al.  Soil compaction processes and their effects on the structure of arable soils and the environment , 1995 .

[12]  A. Dexter,et al.  Soil physics towards 2000 , 1992 .

[13]  K. Reichardt Capacidade de campo , 1988 .

[14]  C. A. Tormena,et al.  Influência de sistemas de preparo do solo na produtividade da mandioca (Manihot esculenta, Crantz) , 2001 .

[15]  E. Ziegel A Step-by-Step Approach to Using the SAS System for Univariate and Multivariate Statistics , 1994 .

[16]  Larry Hatcher,et al.  Introduction to Marketing Research: Using the SAS System Version 6@@@A Step-by-Step Approach to Using the SAS System for Univariate and Multivariate Statistics , 1996 .

[17]  M. S. D. Junior,et al.  Grau de compactação e retenção de água de Latossolos submetidos a diferentes sistemas de manejo , 1999 .

[18]  B. D. Kay,et al.  The sensitivity of shoot growth of corn to the least limiting water range of soils , 1996, Plant and Soil.

[19]  C. A. Tormena,et al.  Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach , 1999 .

[20]  Michael J. Savage,et al.  Lower Limit of Soil Water Availability , 1996 .

[21]  R. Curtis,et al.  Estimating Bulk Density from Organic-Matter Content in Some Vermont Forest Soils1 , 1964 .

[22]  A. Costa,et al.  DETERMINAÇÃO DA UMIDADE NA CAPACIDADE DE CAMPO E PONTO DE MURCHAMENTO PERMANENTE POR DIFERENTES METODOLOGIAS , 2008 .

[23]  D. Devitt,et al.  Turfgrass quality, growth, and water use influenced by salinity and water stress , 1996 .

[24]  M. Andreotti,et al.  Crescimento radicular de plântulas de milho afetado pela resistência do solo à penetração , 1999 .

[25]  Howard M. Taylor,et al.  SOIL STRENGTH‐ROOT PENETRATION RELATIONS FOR MEDIUM- TO COARSE‐TEXTURED SOIL MATERIALS , 1966 .

[26]  A. Jalalian,et al.  Deforestation effects on soil physical and chemical properties, Lordegan, Iran , 2004, Plant and Soil.

[27]  D. Coote,et al.  QUANTIFICATION OF THE EFFECTS OF OVER 35 YEARS OF INTENSIVE CULTIVATION ON FOUR SOILS , 1983 .

[28]  A. Hamblin,et al.  The influence of soil structure on water movement, crop root growth, and water uptake , 1986 .

[29]  M. S. D. Junior,et al.  Quantificação de pressões críticas para o crescimento das plantas , 2001 .

[30]  Mozart Martins Ferreira,et al.  Resistência à penetração e permeabilidade de latossolo vermelho distrófico típico sob sistemas de manejo na região dos cerrados , 2001 .

[31]  F. R. Boone,et al.  The effect of compaction of the arable layer in sandy soils on the growth of maize for silage. 1. Critical matric water potentials in relation to soil aeration and mechanical impedance , 1986 .

[32]  J. Letey Relationship between Soil Physical Properties and Crop Production , 1958 .

[33]  Keith L. Bristow,et al.  Equation for extending water-retention curves to dryness , 1991 .

[34]  J. Fidalski FERTILIDADE DO SOLO SOB PASTAGENS, LAVOURAS ANUAIS E PERMANENTES NA REGIÃO NOROESTE DO PARANÁ , 2008 .

[35]  Paulo Leonel Libardi,et al.  Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto , 1998 .

[36]  M. R. Ribeiro,et al.  Influência do cultivo contínuo da cana-de-açúcar em propriedades morfológicas e físicas de solos argilosos de tabuleiro no Estado de Alagoas , 1992 .

[37]  Ray R. Weil,et al.  Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. , 2000 .

[38]  A. Dexter,et al.  Contribution of natural soil compaction on hardsetting behavior , 2003 .

[39]  P. M. Silveira,et al.  Efeitos do sistema de preparo e da rotação de culturas na porosidade e densidade do solo , 2001 .

[40]  A. R. Grable,et al.  Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots 1 , 1968 .

[41]  C. A. Tormena,et al.  Impacto do cultivo de citros em propriedades químicas, densidade do solo e atividade microbiana de um Podzólico Vermelho-Amarelo , 1999 .

[42]  B. D. Kay,et al.  Rates of Change of Soil Structure Under Different Cropping Systems , 1990 .

[43]  I. C. D. Maria,et al.  Atributos físicos do solo e crescimento radicular de soja em latossolo roxo sob diferentes métodos de preparo do solo , 1999 .

[44]  E. Perfect,et al.  Characterization of the least limiting water range of soils , 1994 .

[45]  B. D. Kay,et al.  Estimating the Least Limiting Water Range of Soils from Properties and Management , 1997 .

[46]  S. Buzetti,et al.  Alterações nas propriedades físicas de um latossolo vermelho-escuro sob diferentes culturas , 1999 .