Applying machine learning to estimate the optical properties of black carbon fractal aggregates

[1]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[2]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[3]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[4]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[5]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[6]  Yan Yin,et al.  Optical properties of black carbon aggregates with non-absorptive coating , 2017 .

[7]  Michael Kahnert,et al.  Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model , 2010 .

[8]  C. Sorensen Light Scattering by Fractal Aggregates: A Review , 2001 .

[9]  G. Mcfiggans,et al.  Black-carbon absorption enhancement in the atmosphere determined by particle mixing state , 2017 .

[10]  Michael I. Mishchenko,et al.  Effects of aggregation on scattering and radiative properties of soot aerosols , 2005 .

[11]  L. Leung,et al.  Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison , 2015 .

[12]  Renyi Zhang,et al.  Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. , 2009, The journal of physical chemistry. A.

[13]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[14]  R. C. Owen,et al.  Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties , 2015 .

[15]  H. Hentschel Fractal Dimension of Generalized Diffusion-Limited Aggregates , 1984 .

[16]  M. Mishchenko,et al.  A multiple sphere T-matrix Fortran code for use on parallel computer clusters , 2011 .

[17]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[18]  Z. Laczik Discrete-dipole-approximation-based light-scattering calculations for particles with a real refractive index smaller than unity. , 1996, Applied optics.

[19]  Tianhai Cheng,et al.  A Study of Optical Properties of Soot Aggregates Composed of Poly-Disperse Monomers Using the Superposition T-Matrix Method , 2015 .

[20]  Sotiris E. Pratsinis,et al.  Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth , 2017 .

[21]  H. Luck Remarks on the state of the art in automatic fire detection , 1997 .

[22]  I. Procaccia,et al.  Multifractal structure of the harmonic measure of diffusion-limited aggregates. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Michael I. Mishchenko,et al.  A study of radiative properties of fractal soot aggregates using the superposition T-matrix method , 2008 .

[24]  C. Nepomuceno,et al.  Cross-validation of predictors for a chronic pain control program. , 1982, The Alabama journal of medical sciences.

[25]  Yongming Zhang,et al.  A model study of aggregates composed of spherical soot monomers with an acentric carbon shell , 2018 .

[26]  B. Gustafson,et al.  A generalized multiparticle Mie-solution: further experimental verification , 2001 .

[27]  M. Kahnert Numerically exact computation of the optical properties of light absorbing carbon aggregates for wavelength of 200 nm–12.2 μm , 2010 .

[28]  Roy G. Grainger,et al.  Simplifying the calculation of light scattering properties for black carbon fractal aggregates , 2014 .

[29]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[30]  D. Mackowski,et al.  A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media , 2014 .

[31]  Fengshan Liu,et al.  On the radiative properties of soot aggregates – Part 2: Effects of coating , 2016 .

[32]  F. Onofri,et al.  Comparison of methods to derive morphological parameters of multi-fractal samples of particle aggreg , 2012 .

[33]  Yu-lin Xu,et al.  Calculation of the Addition Coefficients in Electromagnetic Multisphere-Scattering Theory , 1996 .

[34]  Apoorva Pandey,et al.  Empirical relationships between optical properties and equivalent diameters of fractal soot aggregates at 550 nm wavelength. , 2015, Optics express.

[35]  Tianhai Cheng,et al.  Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols , 2016 .

[36]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[37]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[38]  Reto Knutti,et al.  Climate Forcing by Aerosols--a Hazy Picture , 2003, Science.

[39]  Ping Yang,et al.  Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging , 2016 .

[40]  Timo Nousiainen,et al.  Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. , 2013, Optics express.

[41]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[42]  M. Mishchenko,et al.  T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database , 2004 .

[43]  Sotiris E Pratsinis,et al.  Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[44]  R. Jullien,et al.  A cluster-cluster aggregation model with tunable fractal dimension , 1994 .

[45]  Liwu Liu,et al.  Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere , 2010 .

[46]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[47]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[48]  Fengshan Liu,et al.  On the radiative properties of soot aggregates part 1: Necking and overlapping , 2015 .

[49]  T. Charalampopoulos,et al.  Effects of polydispersity of chainlike aggregates on light-scattering properties and data inversion. , 2002, Applied optics.

[50]  Heping Zhang,et al.  Characteristics of light scattering by smoke particles based on spheroid models , 2007 .

[51]  Andrew A. Lacis,et al.  Scattering and radiative properties of semi-external versus external mixtures of different aerosol types , 2004 .

[52]  T. Cheng,et al.  Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host , 2015 .

[53]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[54]  L. Leung,et al.  Stochastic parameterization for light absorption by internally mixed BC/dust in snow grains for application to climate models , 2014 .

[55]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.