Discounting axioms imply risk neutrality

Although most applications of discounting occur in risky settings, the best-known axiomatic justifications are deterministic. This paper provides an axiomatic rationale for discounting in a stochastic framework. Consider a representation of time and risk preferences with a binary relation on a real vector space of vector-valued discrete-time stochastic processes on a probability space. Four axioms imply that there are unique discount factors such that preferences among stochastic processes correspond to preferences among present value random vectors. The familiar axioms are weak ordering, continuity and nontriviality. The fourth axiom, decomposition, is non-standard and key. These axioms and the converse of decomposition are assumed in previous axiomatic justifications for discounting with nonlinear intraperiod utility functions in deterministic frameworks. Thus, the results here provide the weakest known sufficient conditions for discounting in deterministic or stochastic settings. In addition to the four axioms, if there exists a von Neumann-Morgenstern utility function corresponding to the binary relation, then that function is risk neutral (i.e., affine). In this sense, discounting axioms imply risk neutrality.

[1]  Sumru Altug,et al.  Dynamic Choice and Asset Markets , 1994 .

[2]  M. Shubik Game theory, behavior, and the paradox of the Prisoner's Dilemma: three solutions , 1970 .

[3]  J. March Decisions and Organizations , 1991 .

[4]  Peter H. Farquhar,et al.  Errata to “A Survey of Multiattribute Utility Theory and Applications” , 1978 .

[5]  Nagata Furukawa,et al.  Characterization of Optimal Policies in Vector-Valued Markovian Decision Processes , 1980, Math. Oper. Res..

[6]  John B. Donaldson,et al.  The Structure of Intertemporal Preferences under Uncertainty and Time Consistent Plans , 1985 .

[7]  E. Denardo CONTRACTION MAPPINGS IN THE THEORY UNDERLYING DYNAMIC PROGRAMMING , 1967 .

[8]  Jörgen W. Weibull,et al.  Discounted-Value Representations of Temporal Preferences , 1985, Math. Oper. Res..

[9]  M. J. Sobel,et al.  Risk Neutrality and Ordered Vector Spaces , 2006 .

[10]  T. Koopmans Stationary Ordinal Utility and Impatience , 1960 .

[11]  Peter Dawson Optimal Replacement Policy , 1968 .

[12]  William W.-G. Yeh,et al.  Reservoir Management and Operations Models: A State‐of‐the‐Art Review , 1985 .

[13]  Alice Schoonbroodt,et al.  Complements Versus Substitutes and Trends in Fertility Choice in Dynastic Models , 2007 .

[14]  K. Vind,et al.  Preferences over time , 2003 .

[15]  안태경 Social Science Research Network , 2005 .

[16]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[17]  D. Primont,et al.  Duality, Separability, and Functional Structure: Theory and Economic Applications , 1978 .

[18]  G. Monahan Optimal Advertising with Stochastic Demand , 1983 .

[19]  J. McNamara THE POLICY WHICH MAXIMISES LONG-TERM SURVIVAL OF AN ANIMAL FACED WITH THE RISKS OF STARVATION AND PREDATION , 1990 .

[20]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[21]  Shanefrederick,et al.  Time Discounting and Time Preference : A Critical Review , 2022 .

[22]  John B. Kidd,et al.  Decisions with Multiple Objectives—Preferences and Value Tradeoffs , 1977 .

[23]  D. Blackwell Discounted Dynamic Programming , 1965 .

[24]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[25]  Ellen R. McGrattan,et al.  Does Neoclassical Theory Account for the Effects of Big Fiscal Shocks? Evidence from World War II , 2006 .

[26]  HO THOMASS.Y.,et al.  Term Structure Movements and Pricing Interest Rate Contingent Claims , 2007 .

[27]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[28]  Rakesh K. Sarin,et al.  Measurable Multiattribute Value Functions , 1979, Oper. Res..

[29]  W. Ziemba,et al.  Worldwide asset and liability modeling , 1998 .

[30]  T. Koopmans,et al.  Two papers on the representation of preference orderings : representation of preference orderings with independent components of consumption, and, Representation of preference orderings over time , 1972 .

[31]  A. Williams,et al.  FINANCIAL MEASUREMENT OF CAPITAL INVESTMENTS , 1966 .

[32]  P. Whittle Risk-Sensitive Optimal Control , 1990 .

[33]  Evan L. Porteus,et al.  Temporal von neumann-morgenstern and induced preferences , 1979 .

[34]  Charles E. Blair,et al.  Axioms and Examples Related to Ordinal Dynamic Programming , 1984, Math. Oper. Res..

[35]  Cyrus Derman,et al.  Finite State Markovian Decision Processes , 1970 .

[36]  M. Machina Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty , 1989 .

[37]  Ralph L. Keeney,et al.  PREFERENCES OVER TIME , 1993 .

[38]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[39]  Rutherford Aris,et al.  Discrete Dynamic Programming , 1965, The Mathematical Gazette.

[40]  Michael N. Katehakis,et al.  COMPUTING OPTIMAL SEQUENTIAL ALLOCATION RULES IN CLINICAL TRIALS , 1986 .

[41]  John M. Miyamoto,et al.  Multiattribute Utility Theory Without Expected Utility Foundations , 1996, Oper. Res..

[42]  M. I. Henig Vector-Valued Dynamic Programming , 1983 .

[43]  Ludger Linnemann,et al.  Debt Nonneutrality, Policy Interactions, and Macroeconomic Stability , 2010 .

[44]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  Suresh Sethi,et al.  Optimal Consumption-Investment Decisions Allowing for Bankruptcy: A Survey , 2009 .

[46]  D. White Mean, variance, and probabilistic criteria in finite Markov decision processes: A review , 1988 .

[47]  A. Messier,et al.  Cost Accounting. , 1939, American journal of public health and the nation's health.

[48]  P. Samuelson A Note on Measurement of Utility , 1937 .

[49]  Frederic H. Murphy,et al.  A Dynamic Nash Game Model of Oil Market Disruption and Strategic Stockpiling , 1989, Oper. Res..

[50]  Pedro S. Amaral,et al.  Limited Enforcement, Financial Intermediation, and Economic Development: A Quantitative Assessment , 2010 .

[51]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[52]  C. Derman On Sequential Decisions and Markov Chains , 1962 .

[53]  Peter A. Streufert Ordinal Dynamic Programming , 1991 .

[54]  Eugene A. Feinberg,et al.  Markov Decision Models with Weighted Discounted Criteria , 1994, Math. Oper. Res..

[55]  Kelvin Lancaster,et al.  AN AXIOMATIC THEORY OF CONSUMER TIME PREFERENCE , 1963 .

[56]  Yves Balcer,et al.  Technological expectations and adoption of improved technology , 1984 .

[57]  Larry G. Epstein Stationary cardinal utility and optimal growth under uncertainty , 1983 .

[58]  Frederick van der Ploeg,et al.  Voracious Transformation of a Common Natural Resource into Productive Capital , 2010 .

[59]  J. G. Wendel,et al.  ORDERED VECTOR SPACES , 1952 .

[60]  G. Vechkanov Investments , 2014, Canadian Medical Association journal.

[61]  Peter C. Fishburn,et al.  A Survey of Multiattribute/Multicriterion Evaluation Theories , 1978 .

[62]  P. Wakker Additive representations on rank-ordered sets: II. The topological approach , 1993 .

[63]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[64]  Martine Quinzii,et al.  A Comoment Criterion for the Choice of Risky Investment by Firms , 2010 .

[65]  M. Shubik,et al.  On matching book: a problem in banking and corporate finance , 1992 .

[66]  Derek W. Bunn,et al.  Multiple Criteria Problem Solving , 1979 .

[67]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[68]  G. Loewenstein,et al.  Time Discounting and Time Preference: A Critical Review , 2002 .