Tuning multiple Fano and plasmon resonances in rectangle grid quasi-3D plasmonic-photonic nanostructures

Plasmonic and photonic nanostructures can manipulate light-matter interaction, leading to a wide range of tunable properties. Here, we show that multiple Fano and plasmon resonances can be generated in quasi-3D plasmonic nanostructure arrays on rectangle grid photonic nanostructure substrates. The Fano resonances are the quasiguided modes coupled with the plasmon resonance while the distinct plasmon resonances are the localized surface plasmon resonances of the top gold thin film with sub-wavelength nanohole array and the bottom gold nanodisk array. The Fano and plasmon resonances can be tuned separately and selectively by changing the dimension of photonic and plasmonic nanostructures.

[1]  E. Schonbrun,et al.  Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays , 2008 .

[2]  M. Hentschel,et al.  Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters. , 2011, ACS nano.

[3]  W. Barnes,et al.  Collective resonances in gold nanoparticle arrays. , 2008, Physical review letters.

[4]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[5]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[6]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[7]  Sergey I. Bozhevolnyi,et al.  Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory , 2006 .

[8]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[9]  H. Altug,et al.  Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing , 2009 .

[10]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[11]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[12]  Stephen Gray,et al.  Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. , 2005, Optics express.

[13]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  J. Rogers,et al.  Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals , 2006, Proceedings of the National Academy of Sciences.

[16]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[17]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[18]  T. Ishihara,et al.  Quasiguided modes and optical properties of photonic crystal slabs , 2002 .

[19]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[20]  J. Homola,et al.  Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures. , 2011, Optics express.

[21]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[22]  S. Linden,et al.  Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. , 2001, Physical review letters.

[23]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .