Limitations of superoscillation filters in microscopy applications.

The idea of superresolving pupil filters comes from the concept of superoscillations that may occur in regions of a band-limited signal with small amplitude having oscillations faster than the fastest Fourier component of the signal. In optical microscopy, superresolution can be achieved by appropriate design of pupil functions where the angular aperture determines the ultimate focal spot smaller than the Abbe diffraction limit outside the evanescent field region. The angular aperture cannot be increased indefinitely and the huge sidelobes cannot be avoided that are present in superresolving filters. The limitations of using such kind of filters in microscopy applications are discussed through computational examples.

[1]  W. Lukosz,et al.  Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze , 1963 .

[2]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[3]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[4]  Colin J. R. Sheppard,et al.  Image formation in two-photon fluorescence microscopy , 1990 .

[5]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[6]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[7]  B. Goldberg,et al.  High spatial resolution subsurface microscopy , 2001 .

[8]  M. Gustafsson,et al.  S: Widefield Light Microscopy with 100-nm-scale Resolution in Three Dimensions , 2007 .

[9]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[10]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[11]  Lifeng Li,et al.  Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors , 2003 .

[12]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[13]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[14]  V. Rokhlin,et al.  Prolate spheroidal wavefunctions, quadrature and interpolation , 2001 .

[15]  C W McCutchen,et al.  Superresolution in microscopy and the Abbe resolution limit. , 1967, Journal of the Optical Society of America.

[16]  Craig K. Rushforth,et al.  Image gathering and processing for enhanced resolution , 1984 .

[17]  Jari Turunen,et al.  Surface-profile optimization of diffractive 1:1 imaging lenses , 2001 .

[18]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jari Turunen,et al.  Electromagnetic theory and design of diffractive-lens arrays , 1993 .

[20]  C. Sheppard,et al.  Imaging in high-aperture optical systems , 1987 .