A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem, II: Analysis of the spatial estimator

We complete the analysis of our a posteriori error estimators for the time-dependent Stokes problem in Rd , d = 2 or 3. Our analysis covers non-conforming finite element approximation (Crouzeix–Raviart's elements) in space and backward Euler's scheme in time. For this discretization, we derived in part I of this paper [J. Numer. Math. (2007) 15, No. 2, 137–162] a residual indicator, which uses a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. In this second part we prove some analytical tools, and derive the lower and upper bounds of the spatial estimator.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[3]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[4]  Vidar Thomée,et al.  An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .

[5]  S. Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[6]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[7]  Serge Nicaise,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .

[8]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[9]  J. Lubuma,et al.  Dirichlet Problems in Polyhedral Domains I: Regularity of the Solutions , 1994 .

[10]  Rüdiger Verfürth,et al.  A posteriori error estimates for finite element discretizations of the heat equation , 2003 .

[11]  R. Verfürth,et al.  Error estimates for some quasi-interpolation operators , 1999 .

[12]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[13]  Marco Picasso,et al.  An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..

[14]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[15]  Serge Nicaise,et al.  A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem , 2007, J. Num. Math..

[16]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[17]  Christine Bernardi,et al.  Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .

[18]  S. Nicaise,et al.  A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .

[19]  R. Temam Navier-Stokes Equations , 1977 .

[20]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[21]  Serge Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[22]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .