A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem, II: Analysis of the spatial estimator
暂无分享,去创建一个
[1] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[2] Monique Dauge,et al. Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .
[3] Ricardo G. Durán,et al. The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..
[4] Vidar Thomée,et al. An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem , 1990 .
[5] S. Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[6] R. Durán,et al. A posteriori error estimators for nonconforming finite element methods , 1996 .
[7] Serge Nicaise,et al. Numerische Simulation Auf Massiv Parallelen Rechnern a Posteriori Error Estimation for the Stokes Problem: Anisotropic and Isotropic Discretizations , 2022 .
[8] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[9] J. Lubuma,et al. Dirichlet Problems in Polyhedral Domains I: Regularity of the Solutions , 1994 .
[10] Rüdiger Verfürth,et al. A posteriori error estimates for finite element discretizations of the heat equation , 2003 .
[11] R. Verfürth,et al. Error estimates for some quasi-interpolation operators , 1999 .
[12] Christine Bernardi,et al. A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..
[13] Marco Picasso,et al. An Anisotropic Error Indicator Based on Zienkiewicz-Zhu Error Estimator: Application to Elliptic and Parabolic Problems , 2002, SIAM J. Sci. Comput..
[14] M. Picasso. Adaptive finite elements for a linear parabolic problem , 1998 .
[15] Serge Nicaise,et al. A posteriori error estimates for a nonconforming finite element discretization of the time-dependent Stokes problem , 2007, J. Num. Math..
[16] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[17] Christine Bernardi,et al. Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .
[18] S. Nicaise,et al. A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .
[19] R. Temam. Navier-Stokes Equations , 1977 .
[20] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[21] Serge Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[22] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .