French Swimwear for Membrane Proteins

Integral membrane proteins (IMPs) represent 20 ± 30% of all proteins and well over 50% of the targets for existing drugs. 2] Native IMPs are embedded in the lipid bilayers of biological membranes. The purification of IMPs requires that they first be rendered water soluble. Once solubilized, IMPs may be TMreconstituted∫ back into lipid bilayers or can be directly characterized in soluble form. For example, both 3D crystal growth and solution NMR spectroscopy require the use of solubilized IMPs. Traditionally, membrane proteins are maintained in soluble form by using detergents, which are able to dissolve lipid bilayers to form water-soluble complexes with both lipids and IMPs (Figure 1). Such complexes of detergent with protein and possibly

[1]  C. Sanders,et al.  Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. , 1995, Biochemistry.

[2]  C. Tribet,et al.  Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Sanders,et al.  Functionality of a membrane protein in bicelles. , 2000, Analytical biochemistry.

[4]  G. Privé,et al.  Lipopeptide detergents designed for the structural study of membrane proteins , 2003, Nature Biotechnology.

[5]  Charles R Sanders,et al.  Disease-related misassembly of membrane proteins. , 2004, Annual review of biophysics and biomolecular structure.

[6]  E. Landau,et al.  Detergent‐free membrane protein crystallization , 1999, FEBS letters.

[7]  J H Prestegard,et al.  Partial alignment of biomolecules: an aid to NMR characterization. , 2001, Current opinion in chemical biology.

[8]  S. Sligar,et al.  Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. , 2003, BioTechniques.

[9]  Stephen G. Sligar,et al.  Self-Assembly of Discoidal Phospholipid Bilayer Nanoparticles with Membrane Scaffold Proteins , 2002 .

[10]  A. Bax,et al.  Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. , 2001, Journal of the American Chemical Society.

[11]  A. Bax Weak alignment offers new NMR opportunities to study protein structure and dynamics , 2003, Protein science : a publication of the Protein Society.

[12]  S. Krueger,et al.  SANS study on the effect of lanthanide ions and charged lipids on the morphology of phospholipid mixtures. Small-angle neutron scattering. , 2002, Biophysical journal.

[13]  G. Molle,et al.  Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization , 2003, Protein science : a publication of the Protein Society.

[14]  D. Engelman,et al.  Amphipols: polymeric surfactants for membrane biology research , 2003, Cellular and Molecular Life Sciences CMLS.

[15]  Y. Gohon,et al.  Membrane protein–surfactant complexes , 2003 .

[16]  C. Sanders,et al.  Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. , 1997, Biophysical journal.

[17]  C. Sanders,et al.  Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. , 2000, Biochimica et biophysica acta.

[18]  G. Sprott Structures of archaebacterial membrane lipids , 1992, Journal of bioenergetics and biomembranes.

[19]  G. Privé,et al.  Stability of the lactose permease in detergent solutions. , 2002, Biochimica et biophysica acta.

[20]  Pierre-Jean Corringer,et al.  Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints , 2002, FEBS letters.

[21]  So Iwata,et al.  Methods and Results in Crystallization of Membrane Proteins , 2003 .

[22]  S. Sligar,et al.  Self‐assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers , 2003, Protein science : a publication of the Protein Society.

[23]  J. Bowie Stabilizing membrane proteins. , 2001, Current opinion in structural biology.

[24]  S. Sligar,et al.  Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. , 1998, Journal of structural biology.

[25]  J H Prestegard,et al.  NMR structures of biomolecules using field oriented media and residual dipolar couplings , 2000, Quarterly Reviews of Biophysics.

[26]  L. Miercke,et al.  Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. , 1993, Science.

[27]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[28]  J. Møller,et al.  Interaction of membrane proteins and lipids with solubilizing detergents. , 2000, Biochimica et biophysica acta.

[29]  C. Sanders,et al.  Amphipols can support the activity of a membrane enzyme. , 2002, Journal of the American Chemical Society.

[30]  J. Bowie,et al.  Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. , 2002, Journal of molecular biology.

[31]  C. Sanders,et al.  Bicelles: a model membrane system for all seasons? , 1998, Structure.

[32]  S. Sligar,et al.  Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Hancock,et al.  Morphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study. , 2001, Biochimica et biophysica acta.

[34]  C. Sanders,et al.  Use of amphipathic polymers to deliver a membrane protein to lipid bilayers , 2001, FEBS letters.