Sequential Monte Carlo Methods for Stochastic Volatility Models with Jumps

In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage eect, non constant conditional mean and jumps. Our idea relies on the auxiliary particle lter algorithm together with the Markov Chain Monte Carlo (MCMC) method- ology. Our method allows to sequentially evaluate the parameters and the latent processes involved in the dynamic of interest. An empirical applica- tion on simulated data and on the Standard & Poor's 500 index is presented to study the performance of the algorithm implemented.

[1]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[2]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[3]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[4]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[5]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[6]  D. Duffie,et al.  Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Nicholas G. Polson,et al.  Nonlinear Filtering of Stochastic Differential Equations with Jumps , 2002 .

[9]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[10]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[11]  Siem Jan Koopman,et al.  The stochastic volatility in mean model: empirical evidence from international stock markets , 2002 .

[12]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[13]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[14]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[15]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[16]  Michael W. Brandt,et al.  Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .

[17]  Jonathan R. Stroud,et al.  Sequential Optimal Portfolio Performance: Market and Volatility Timing , 2002 .

[18]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[19]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[20]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[21]  G. Kitagawa A self-organizing state-space model , 1998 .

[22]  M. Pitt Smooth Particle Filters for Likelihood Evaluation and Maximisation , 2002 .

[23]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[24]  R. C. Merton,et al.  Optimum consumption and portfolio rules in a continuous - time model Journal of Economic Theory 3 , 1971 .

[25]  Davide Raggi,et al.  Adaptive MCMC methods for inference on affine stochastic volatility models with jumps , 2005 .

[26]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[27]  Jun Yu On Leverage in a Stochastic Volatility Model , 2004 .

[28]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[29]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[30]  Calyampudi Radhakrishna Rao,et al.  Statistical methods in finance , 1996 .

[31]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[32]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[33]  M. West Approximating posterior distributions by mixtures , 1993 .

[34]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[35]  Nicholas G. Polson,et al.  Sequential Parameter Estimation in Stochastic Volatility Models with Jumps , 2006 .

[36]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[37]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[38]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[39]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[40]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[41]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[42]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[43]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[44]  N. Shephard,et al.  Markov chain Monte Carlo methods for stochastic volatility models , 2002 .

[45]  Jurgen A. Doornik,et al.  Ox: an Object-oriented Matrix Programming Language , 1996 .

[46]  Walter R. Gilks,et al.  RESAMPLE-MOVE Filtering with Cross-Model Jumps , 2001, Sequential Monte Carlo Methods in Practice.

[47]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .