Visualizing evolving scalar phenomena

Abstract Visualizing 3D continuum or time-varying simulation (scalar) datasets is difficult because of the immense amount of data to be processed and understood. Furthermore, these datasets may contain many evolving amorphous regions, making it difficult to visually follow features of interest. In this paper, we present a process for analyzing continuum datasets and review some of our previous work on feature tracking. We show how the tracking information can be used to enhance standard rendering and enable new visualizations. The tracking is demonstrated on different application domains including turbulence, weather and inlet design.

[1]  Frits H. Post,et al.  Deformable Surface Techniques for Field Visualization , 1997, Comput. Graph. Forum.

[2]  Gecheng Zha,et al.  Numerical simulation of HSCT inlet operability with angle of attack , 1997 .

[3]  David G. Dritschel,et al.  The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid , 1996, Journal of Fluid Mechanics.

[4]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[5]  Deborah Silver,et al.  Object-oriented visualization , 1995, IEEE Computer Graphics and Applications.

[6]  David G. Dritschel,et al.  A contour‐advective semi‐lagrangian numerical algorithm for simulating fine‐scale conservative dynamical fields , 1997 .

[7]  Han-Wei Shen,et al.  Differential volume rendering: a fast volume visualization technique for flow animation , 1994, Proceedings Visualization '94.

[8]  D. I. Pullin,et al.  Merger and cancellation of strained vortices , 1989, Journal of Fluid Mechanics.

[9]  Ross T. Whitaker,et al.  Volumetric deformable models: active blobs , 1994, Other Conferences.

[10]  Y. Arnaud,et al.  Automatic tracking and characterization of African convective systems on Meteosat pictures , 1992 .

[11]  Al Globus A software model for visualization of large unsteady 3-D CFD results , 1995 .

[12]  Robert M. O'Bara,et al.  Geometrically deformed models: a method for extracting closed geometric models form volume data , 1991, SIGGRAPH.

[13]  Richard B. Pelz,et al.  Reconnection in orthogonally interacting vortex tubes: Direct numerical simulations and quantifications , 1992 .

[14]  T. van Walsum,et al.  Selective visualization on curvilinear grids , 1995 .

[15]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[16]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[17]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[18]  V MillerJames,et al.  Geometrically deformed models , 1991 .

[19]  Tosiyasu L. Kunii,et al.  Constructing a Reeb graph automatically from cross sections , 1991, IEEE Computer Graphics and Applications.

[20]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[21]  Shiyi Chen,et al.  High‐resolution turbulent simulations using the Connection Machine‐2 , 1992 .

[22]  Alain Vincent,et al.  An algorithm for space recognition and time tracking of vorticity tubes in turbulence , 1992, CVGIP Image Underst..

[23]  Baining Guo Interval set: a volume rendering technique generalizing isosurface extraction , 1995, Proceedings Visualization '95.

[24]  Deborah Silver,et al.  Quantifying Visualizations for Reduced Modeling in Nonlinear Science: Extracting Structures from Data Sets , 1993, J. Vis. Commun. Image Represent..