Optical constants of cubic GaN/GaAs(001): Experiment and modeling

The optical constants epsilon(E)=epsilon(1)(E)+iepsilon(2)(E) of unintentionally doped cubic GaN grown on GaAs(001) have been measured at 300 K using spectral ellipsometry in the range of 1.5-5.0 eV. The epsilon(E) spectra display a structure, associated with the critical point at E-0 (direct gap) and some contribution mainly coming from the E-1 critical point. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden-Munoz model dielectric function [M. Munoz et al., J. Appl. Phys. 92, 5878 (2002)]. This model is based on the electronic energy-band structure near critical points plus excitonic and band-to-band Coulomb-enhancement effects at E-0, E-0 + Delta(0) and the E-1, E-1 + Delta(1), doublet. In addition to evaluating the energy of the E-0 critical point, the binding energy (R-1) of the two-dimensional exciton related to the E-1 critical point was estimated using the effective mass/k.p theory. The line, shape of the imaginary part of the cubic-GaN dielectric function shows excitonic effects at room temperature not withstanding that the exciton was not resolved. (C) 2003 American Institute of Physics.

[1]  Greene,et al.  Temperature-dependent optical band gap of the metastable zinc-blende structure beta -GaN. , 1994, Physical review. B, Condensed matter.

[2]  H. Okumura,et al.  Optical Constants of Cubic GaN, AlN, and AlGaN Alloys , 2000 .

[3]  E. Kane,et al.  Coulomb Effects at Saddle-Type Critical Points , 1969 .

[4]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[5]  Wills,et al.  Optical and electronic-structure study of cubic and hexagonal GaN thin films. , 1995, Physical review. B, Condensed matter.

[6]  Hadis Morkoç,et al.  Refractive indices of wurtzite and zincblende GaN , 1993 .

[7]  C. Thomsen,et al.  Pressure and temperature effects on optical transitions in cubic GaN , 1999 .

[8]  M. Balkanski,et al.  Coulomb Effects at Saddle-Type Critical Points in CdTe, ZnTe, ZnSe, and HgTe , 1971 .

[9]  Shirley,et al.  Quasiparticle band structure of AlN and GaN. , 1993, Physical review. B, Condensed matter.

[10]  Robert F. Davis,et al.  Growth of cubic phase gallium nitride by modified molecular‐beam epitaxy , 1989 .

[11]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[12]  Yang,et al.  Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence. , 1996, Physical review. B, Condensed matter.

[13]  V. Asnin,et al.  Modeling the Optical Constants of Diamond- and Zincblende-Type Semiconductors: Discrete and Continuum Exciton Effects at E0 and E1 , 1999 .

[14]  Francis Arthur Jenkins,et al.  Fundamentals of Optics , 1976 .

[15]  Joseph L. Birman,et al.  Electronic States and Optical Transitions in Solids , 1976 .

[16]  Hidenao Tanaka,et al.  Stimulated emission at 34 K from an optically pumped cubic GaN/AlGaN heterostructure grown by metalorganic vapor-phase epitaxy , 1997 .

[17]  Nae-Eung Lee,et al.  Heteroepitaxial wurtzite and zinc‐blende structure GaN grown by reactive‐ion molecular‐beam epitaxy: Growth kinetics, microstructure, and properties , 1993 .

[18]  John M. Zavada,et al.  Ordinary optical dielectric functions of anisotropic hexagonal GaN film determined by variable angle spectroscopic ellipsometry , 2000 .

[19]  Kim,et al.  Optical properties of ZnSe and its modeling. , 1996, Physical review. B, Condensed matter.

[20]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[21]  Klaus Lischka,et al.  Mechanisms of optical gain in cubic gallium nitrite , 1998 .

[22]  O. Brandt,et al.  Optical gain in optically pumped cubic GaN at room temperature , 1997 .

[23]  Fred H. Pollak,et al.  SPECTRAL ELLIPSOMETRY INVESTIGATION OF ZN0.53CD0.47SE LATTICE MATCHED TO INP , 1997 .

[24]  Lianxi Zheng,et al.  Cubic-phase GaN light-emitting diodes , 1999 .

[25]  Eoin P. O'Reilly,et al.  Optical gain in wide bandgap GaN quantum well lasers , 1996 .

[26]  Fred H. Pollak,et al.  Optical constants of In0.53Ga0.47As/InP: Experiment and modeling , 2002 .

[27]  Adachi Excitonic effects in the optical spectrum of GaAs. , 1990, Physical review. B, Condensed matter.

[28]  R. M. Park,et al.  Growth of zinc blende‐GaN on β‐SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge, nitrogen free‐radical source , 1993 .

[29]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[30]  Brent P. Gila,et al.  Surface Chemical Treatment for the Cleaning of AlN and GaN Surfaces , 2000 .

[31]  D. Shvydka,et al.  Optical properties of CdTe1−xSx (0⩽x⩽1): Experiment and modeling , 1999 .

[32]  R. Goldhahn,et al.  Optical constants of cubic GaN in the energy range of 1.5–3.7 eV , 1999 .

[33]  Moustakas,et al.  Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN. , 1994, Physical review. B, Condensed matter.