Maintenance of Triconnected Components of Graphs (Extended Abstract)

In this paper, optimal algorithms and data structures are presented to maintain the triconnected components of a general graph, under insertions of edges in the graph. At any moment, the data structure can answer the following type of query: given two nodes in the graph, are these nodes triconnected. Starting from an “empty” graph of n nodes (i.e., a graph with no edges) the solution runs in O(n + m.α(m, n)) total time, where m is the total number of queries and edge insertions. The solution allows for insertions of nodes also.

[1]  Ja Han La Poutré,et al.  Maintenance of 2- and 3-connected components of graphs; Part II: 2- and 3-edge-connected components and 2-vertex-connected components , 1990 .

[2]  Harold N. Gabow,et al.  Data structures for weighted matching and nearest common ancestors with linking , 1990, SODA '90.

[3]  Michael E. Saks,et al.  The cell probe complexity of dynamic data structures , 1989, STOC '89.

[4]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[5]  Giuseppe F. Italiano,et al.  Finding Paths and Deleting Edges in Directed Acyclic Graphs , 1988, Inf. Process. Lett..

[6]  David Eppstein,et al.  Maintenance of a minimum spanning forest in a dynamic planar graph , 1990, SODA '90.

[7]  Frank Harary,et al.  Graph Theory , 2016 .

[8]  Harold N. Gabow,et al.  A scaling algorithm for weighted matching on general graphs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[9]  Zvi Galil,et al.  Fully dynamic algorithms for edge connectivity problems , 1991, STOC '91.

[10]  Jeffery R. Westbrook Fast Incremental Planarity Testing , 1992, ICALP.

[11]  Jan van Leeuwen,et al.  Maintenance of Transitive Closures and Transitive Reductions of Graphs , 1987, WG.

[12]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[13]  W. T. Tutte Connectivity in graphs , 1966 .

[14]  Han La Poutré Lower bounds for the union-find and the split-find problem on pointer machines , 1990, STOC '90.

[15]  Hans Rohnert,et al.  A Dynamization of the All Pairs Least Cost Path Problem , 1985, STACS.

[16]  Giuseppe F. Italiano,et al.  Amortized Efficiency of a Path Retrieval Data Structure , 1986, Theor. Comput. Sci..

[17]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.

[18]  Roberto Tamassia,et al.  Incremental planarity testing , 1989, 30th Annual Symposium on Foundations of Computer Science.

[19]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[20]  Roberto Tamassia,et al.  On-Line Graph Algorithms with SPQR-Trees , 1990, ICALP.

[21]  Jan van Leeuwen,et al.  Maintenance of 2- and 3-connected components of graphs; Part I: 2- and 3-edge-connected components , 1990 .

[22]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[23]  J. A. La Poutré New techniques for the union-find problem , 1990, SODA 1990.

[24]  Roberto Tamassia,et al.  Fully dynamic techniques for point location and transitive closure in planar structures , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.