Imaging Energy Harvesting and Storage Systems at the Nanoscale

Our scientific understanding of the nanoscale world is continuously growing ever since atomic force microscopy (AFM) has enabled us to “see” materials at this length scale. Beyond morphology, functional imaging is becoming standard practice as new AFM-based techniques are continuously extending its capabilities. Resolving material properties with high spatial accuracy is now extremely critical as future next-generation energy harvesting and storage systems are comprised of complex and intricate nanoscale features. Here, we review recent research discoveries that implemented AFM methods to measure and determine how the electrical, chemical, and/or optical properties influence the overall device behavior. We dedicate a portion of this Review to perovskite solar cells, which are of primary interest to photovoltaic research, and highlight the remarkable progress made toward understanding and controlling their instabilities. We conclude with a summary and outlook anticipating the most pressing materials-relate...

[1]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[2]  Thuc‐Quyen Nguyen,et al.  Nanoscale Characterization of Tetrabenzoporphyrin and Fullerene‐Based Solar Cells by Photoconductive Atomic Force Microscopy , 2011, Advanced materials.

[3]  Stanley C. S. Lai,et al.  Scanning electrochemical cell microscopy: theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. , 2012, Analytical chemistry.

[4]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[5]  Elizabeth M. Tennyson,et al.  Mesoscale Functional Imaging of Materials for Photovoltaics , 2017 .

[6]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[7]  S. Jiang,et al.  Thermally and electrochemically induced electrode/electrolyte interfaces in solid oxide fuel cells: An AFM and EIS Study , 2015 .

[8]  H. Klauk,et al.  Fermi level pinning by gap states in organic semiconductors. , 2013, Physical review letters.

[9]  Martin A. Green,et al.  Beneficial Effects of PbI2 Incorporated in Organo‐Lead Halide Perovskite Solar Cells , 2016 .

[10]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[11]  E. Yu,et al.  Scanning tunneling spectroscopy and Kelvin probe force microscopy investigation of Fermi energy level pinning mechanism on InAs and InGaAs clean surfaces , 2010 .

[12]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[13]  N. Bartelt,et al.  Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes , 2014 .

[14]  H. Jung,et al.  Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1−xBrx)3 perovskite solar cells , 2017, Nanotechnology.

[15]  Xiaoji G. Xu,et al.  Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy , 2017, Science Advances.

[16]  Samson A Jenekhe,et al.  The role of mesoscopic PCBM crystallites in solvent vapor annealed copolymer solar cells. , 2009, ACS nano.

[17]  Thuc‐Quyen Nguyen,et al.  Nanostructure and Optoelectronic Characterization of Small Molecule Bulk Heterojunction Solar Cells by Photoconductive Atomic Force Microscopy , 2010 .

[18]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[19]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[20]  C. Brabec,et al.  High‐Resolution Spectroscopic Mapping of the Chemical Contrast from Nanometer Domains in P3HT:PCBM Organic Blend Films for Solar‐Cell Applications , 2010 .

[21]  H. Sirringhaus,et al.  Local Versus Long‐Range Diffusion Effects of Photoexcited States on Radiative Recombination in Organic–Inorganic Lead Halide Perovskites , 2015, Advanced science.

[22]  Fuzhi Huang,et al.  Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite. , 2016, ACS nano.

[23]  Jason W. Boucher,et al.  Selective Area Epitaxy of GaAs Microstructures by Close-Spaced Vapor Transport for Solar Energy Conversion Applications , 2016 .

[24]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[25]  Jasbinder S. Sanghera,et al.  Nanoimaging of Open‐Circuit Voltage in Photovoltaic Devices , 2015 .

[26]  D. F. Ogletree,et al.  Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite , 2016, Nature Energy.

[27]  Li Lu,et al.  Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. , 2013, ACS nano.

[28]  J. Munday,et al.  Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy , 2016, Nanotechnology.

[29]  Thomas H. Epps,et al.  Harnessing the Power of Plastics: Nanostructured Polymer Systems in Lithium-Ion Batteries , 2017 .

[30]  Li Lu,et al.  Grain boundary effects on Li-ion diffusion in a Li1.2Co0.13Ni0.13Mn0.54O2 thin film cathode studied by scanning probe microscopy techniques , 2016 .

[31]  Jinsong Huang,et al.  Chloride Incorporation Process in CH₃NH₃PbI(3-x)Cl(x) Perovskites via Nanoscale Bandgap Maps. , 2015, Nano letters.

[32]  H. K. Wickramasinghe,et al.  Image force microscopy of molecular resonance: A microscope principle. , 2010, Applied physics letters.

[33]  I. Rajapaksa,et al.  Raman spectroscopy and microscopy based on mechanical force detection. , 2011, Applied physics letters.

[34]  Yanfa Yan,et al.  Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy , 2010 .

[35]  E. Altman,et al.  Three‐Dimensional Atomic Force Microscopy – Taking Surface Imaging to the Next Level , 2010, Advanced materials.

[36]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[37]  M Stanley Whittingham,et al.  Ultimate limits to intercalation reactions for lithium batteries. , 2014, Chemical reviews.

[38]  A. Centrone,et al.  Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. , 2013, Small.

[39]  M. Raschke,et al.  Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids , 2012 .

[40]  A. Dazzi,et al.  Conducting polymer nanostructures for photocatalysis under visible light. , 2015, Nature materials.

[41]  Jinsong Huang,et al.  CH 3 NH 3 PbI 3 perovskites: Ferroelasticity revealed , 2017 .

[42]  Jung-Pyo Hong,et al.  SURFACE CHARGE DENSITY AND EVOLUTION OF DOMAIN STRUCTURE IN TRIGLYCINE SULFATE DETERMINED BY ELECTROSTATIC-FORCE MICROSCOPY , 1998 .

[43]  M. Hersam,et al.  Tip-enhanced Raman spectroscopy: From concepts to practical applications , 2016 .

[44]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[45]  L. Carrette,et al.  Fuel cells: principles, types, fuels, and applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Sergei Lopatin,et al.  Resonant antenna probes for tip-enhanced infrared near-field microscopy. , 2013, Nano letters.

[47]  D. Bonnell,et al.  Direct in situ probe of electrochemical processes in operating fuel cells. , 2013, ACS nano.

[48]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[49]  K. Liang,et al.  Inorganic Porous Films for Renewable Energy Storage , 2017 .

[50]  T. Ujihara,et al.  Minority carrier lifetime in polycrystalline silicon solar cells studied by photoassisted Kelvin probe force microscopy , 2008 .

[51]  Jason W. Boucher,et al.  Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics , 2015 .

[52]  J. R. Patel,et al.  Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. , 2003, Journal of synchrotron radiation.

[53]  M. Young,et al.  Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells , 2014 .

[54]  D. Bradley,et al.  Surface and subsurface morphology of operating nanowire:fullerene solar cells revealed by photoconductive-AFM , 2011 .

[55]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[56]  Sidney R. Cohen,et al.  Direct evidence for grain-boundary depletion in polycrystalline CdTe from nanoscale-resolved measurements , 2003 .

[57]  Stephen Jesse,et al.  Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. , 2017, ACS nano.

[58]  K. Ino,et al.  Nanoscale visualization of redox activity at lithium-ion battery cathodes , 2014, Nature Communications.

[59]  Y. S. Meng,et al.  Topological defect dynamics in operando battery nanoparticles , 2015, Science.

[60]  G. Cao,et al.  Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy , 2012 .

[61]  C. Brabec,et al.  Solar Cell Blends: High-Resolution Spectroscopic Mapping of the Chemical Contrast from Nanometer Domains in P3HT:PCBM Organic Blend Films for Solar-Cell Applications (Adv. Funct. Mater. 3/2010) , 2010 .

[62]  M. Salmeron,et al.  Charge trapping states at the SiO2-oligothiophene monolayer interface in field effect transistors studied by Kelvin probe force microscopy. , 2013, ACS nano.

[63]  Maxim Abashin,et al.  Nanoscale imaging of photocurrent and efficiency in CdTe solar cells. , 2014, ACS nano.

[64]  Paul Girard,et al.  Electrostatic force microscopy: principles and some applications to semiconductors , 2001 .

[65]  Miao Hu,et al.  Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. , 2017, Nano letters.

[66]  Renato Zenobi,et al.  Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. , 2013, Angewandte Chemie.

[67]  L. Arzel,et al.  Effect of the KF post-deposition treatment on grain boundary properties in Cu(In, Ga)Se2 thin films , 2017, Scientific Reports.

[68]  R. Birkmire,et al.  Optimization of vapor post-deposition processing for evaporated CdS/CdTe solar cells , 1999 .

[69]  A. Rockett,et al.  CdCl2 Treatment-Induced Enhanced Conductivity in CdTe Solar Cells Observed Using Conductive Atomic Force Microscopy. , 2016, The journal of physical chemistry letters.

[70]  P. Grutter,et al.  Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation , 2017, 1703.00033.

[71]  A. Kahn Hybrid Organic—Inorganic Perovskites (HOIPs): Opportunities and Challenges , 2015 .

[72]  N. Dudney,et al.  Interface Limited Lithium Transport in Solid-State Batteries. , 2014, The journal of physical chemistry letters.

[73]  M. Webber,et al.  The impacts of storing solar energy in the home to reduce reliance on the utility , 2017, Nature Energy.

[74]  A. Zunger,et al.  Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities , 2016, 1611.08032.

[75]  Alexandre Dazzi,et al.  AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. , 2017, Chemical reviews.

[76]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[77]  J. Major Grain boundaries in CdTe thin film solar cells: a review , 2016 .

[78]  A. Dazzi,et al.  Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. , 2005, Optics letters.

[79]  P. Lund,et al.  Device stability of perovskite solar cells – A review , 2017 .

[80]  W. Warta,et al.  Solar cell efficiency tables (version 50) , 2017 .

[81]  Eric A. Stach,et al.  Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy , 2016, Nature Energy.

[82]  B. Grévin,et al.  Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells. , 2016, ACS applied materials & interfaces.

[83]  K. Matsushige,et al.  Dopant profiling on semiconducting sample by scanning capacitance force microscopy , 2002 .

[84]  Sergei V. Kalinin,et al.  Probing Li-ion Dynamics and Reactivity on the Nanoscale , 2011 .

[85]  W. Chang,et al.  Design and fabrication of a tip-on-aperture probe for resolution enhancement of optical patterning , 2016 .

[86]  Resolving Local Electrochemistry at the Nanoscale via Electrochemical Strain Microscopy: Modeling and Experiments , 2017, 1704.01158.

[87]  A. Scherer,et al.  Near-field scanning optical microscopic transient lens for carrier dynamics study in InGaN∕GaN , 2005 .

[88]  Weihua Zhang,et al.  Tip-enhanced Raman Spectroscopy - Its status, challenges and future directions , 2009 .

[89]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[90]  H. K. Wickramasinghe,et al.  Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy. , 2015, Accounts of chemical research.

[91]  C. Prater,et al.  Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. , 2012, ACS nano.

[92]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[93]  Rommel Noufi,et al.  The state and future prospects of kesterite photovoltaics , 2013 .

[94]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[95]  Joshua A. Taillon,et al.  Near‐Field Optical Properties of Fully Alloyed Noble Metal Nanoparticles , 2017 .

[96]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[97]  L. Wan,et al.  Microscopic Investigation of Grain Boundaries in Organolead Halide Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[98]  Meilin Liu,et al.  Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. , 2015, Nano letters.

[99]  K. Zaghib,et al.  Measuring Spatially Resolved Collective Ionic Transport on Lithium Battery Cathodes Using Atomic Force Microscopy. , 2017, Nano letters.

[100]  D. Fujita,et al.  Analytical procedure for experimental quantification of carrier concentration in semiconductor devices by using electric scanning probe microscopy , 2014 .

[101]  R. Shivanna,et al.  Photoconductive NSOM for mapping optoelectronic phases in nanostructures , 2014 .

[102]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[103]  P. Kamat,et al.  Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites , 2017 .

[104]  D. Ginger,et al.  Imaging Charge Transfer State Excitations in Polymer/Fullerene Solar Cells with Time-Resolved Electrostatic Force Microscopy. , 2015, The journal of physical chemistry letters.

[105]  A. Vakakis,et al.  Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification , 2013, Nanotechnology.

[106]  U. Rau,et al.  Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. , 2014, Nano letters.

[107]  Jason W. Boucher,et al.  Low-Cost Approaches to III–V Semiconductor Growth for Photovoltaic Applications , 2017 .

[108]  Lei Wan,et al.  Nanoscale chemical imaging by photoinduced force microscopy , 2016, Science Advances.

[109]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[110]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[111]  C. G. Williams,et al.  Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. , 2009, Analytical chemistry.

[112]  S. Nishiwaki,et al.  Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices , 2003 .

[113]  Stephen Jesse,et al.  Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. , 2010, Nano letters.

[114]  D. Ginger,et al.  Intensity-modulated scanning Kelvin probe microscopy for probing recombination in organic photovoltaics. , 2014, ACS nano.

[115]  Y. Ie,et al.  Fine structures of organic photovoltaic thin films probed by frequency-shift electrostatic force microscopy , 2016 .

[116]  M. Abashin,et al.  Mapping the Local Photoelectronic Properties of Polycrystalline Solar Cells Through High Resolution Laser-Beam-Induced Current Microscopy , 2014, IEEE Journal of Photovoltaics.

[117]  U. Dürig,et al.  Near‐field optical‐scanning microscopy , 1986 .

[118]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[119]  Andrew J. Wilson,et al.  Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. , 2016, Accounts of chemical research.

[120]  Rémi Carminati,et al.  Theory of infrared nanospectroscopy by photothermal induced resonance , 2010 .

[121]  S. Haile,et al.  Nanoscale electrodes by conducting atomic force microscopy: oxygen reduction kinetics at the Ptmid R:CsHSO4 interface. , 2010, ACS nano.

[122]  Xin-dong Wang,et al.  Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. , 2017, ACS nano.

[123]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[124]  O. Singh,et al.  Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques , 2015 .

[125]  John A Marohn,et al.  Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene. , 2007, The journal of physical chemistry. B.

[126]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[127]  Olivier J. F. Martin,et al.  Scanning near-field optical microscopy with aperture probes: Fundamentals and applications , 2000 .

[128]  D. Mariolle,et al.  Measuring the lifetime of silicon nanocrystal solar cell photo-carriers by using Kelvin probe force microscopy and x-ray photoelectron spectroscopy , 2014, Nanotechnology.

[129]  James J. Steffes,et al.  Mapping the Photoresponse of CH3NH3PbI3 Hybrid Perovskite Thin Films at the Nanoscale. , 2016, Nano letters.

[130]  Mohammad Khaja Nazeeruddin,et al.  Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell , 2014, Nature Communications.

[131]  D. F. Ogletree,et al.  Revealing Optical Properties of Reduced‐Dimensionality Materials at Relevant Length Scales , 2015, Advanced materials.

[132]  D. Fujita,et al.  Characterization of carrier concentration in CIGS solar cells by scanning capacitance microscopy , 2014 .

[133]  A. Pearse,et al.  Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries. , 2015, ACS applied materials & interfaces.

[134]  Jinsong Huang,et al.  CH3NH3PbI3 perovskites: Ferroelasticity revealed , 2017, Science Advances.

[135]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[136]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[137]  F. Castro,et al.  Organic photovoltaics: principles and techniques for nanometre scale characterization , 2010, Nanotechnology.

[138]  Wei Bao,et al.  Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging , 2012, Science.

[139]  Klaus Kern,et al.  Apertureless scanning near field optical microscope with sub-10 nm resolution , 2006 .

[140]  Ki-Bong Song,et al.  Recent progress of nano-technology with NSOM. , 2007, Micron.

[141]  R. Lazzaroni,et al.  Nanoscale study of MoSe2/poly(3-hexylthiophene) bulk heterojunctions for hybrid photovoltaic applications , 2016 .