Scaling Exponents for Lattice Quantum Gravity in Four Dimensions

© 2015 American Physical Society. In this work nonperturbative aspects of quantum gravity are investigated using the lattice formulation, and some new results are presented for critical exponents, amplitudes, and invariant correlation functions. Values for the universal scaling dimensions are compared with other nonperturbative approaches to gravity in four dimensions, and specifically to the conjectured value for the universal critical exponent ν=1/3. The lattice results are generally consistent with gravitational antiscreening, which would imply a slow increase in the strength of the gravitational coupling with distance, and presented herein are detailed estimates for exponents and amplitudes characterizing this slow rise. Furthermore, it is shown that in the lattice approach (as for gauge theories) the quantum theory is highly constrained, and eventually, by virtue of scaling, depends on a rather small set of physical parameters. Arguments are given in support of the statement that the fundamental reference scale for the growth of the gravitational coupling G with distance is represented by the observed scaled cosmological constant λ, which in gravity acts as an effective nonperturbative infrared cutoff. In this nonperturbative vacuum condensate picture a fundamental relationship emerges among the scale characterizing the running of G at large distances, the macroscopic scale for the curvature as described by the observed cosmological constant, and the behavior of invariant gravitational correlation functions at large distances. Overall, the lattice results suggest that the slow infrared growth of G with distance should become observable only on very large distance scales, comparable to λ. One may hope that future high precision satellite experiments could possibly come within reach of this small quantum correction, as suggested by the vacuum condensate picture of quantum gravity.

[1]  Kevin Falls,et al.  Renormalization of Newton's constant , 2015, 1501.05331.

[2]  Kevin Falls,et al.  Asymptotic safety and the cosmological constant , 2014, 1408.0276.

[3]  G. Modanese Vacuum correlations in quantum gravity , 1992 .

[4]  S. Brodsky,et al.  Condensates in quantum chromodynamics and the cosmological constant , 2009, Proceedings of the National Academy of Sciences.

[5]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[6]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[7]  B. Dewitt QUANTUM THEORY OF GRAVITY. III. APPLICATIONS OF THE COVARIANT THEORY. , 1967 .

[8]  Modanese Geodesic round trips by parallel transport in quantum gravity. , 1993, Physical review. D, Particles and fields.

[9]  K. Wilson Renormalization Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture , 1971 .

[10]  Renormalization group running of Newton's constant G : The static isotropic case , 2006, hep-th/0607228.

[11]  Gravitational scaling dimensions , 1999, hep-th/9912246.

[12]  M. Reuter,et al.  The role of background independence for asymptotic safety in Quantum Einstein Gravity , 2009, 0903.2971.

[13]  M. Peskin,et al.  An Introduction To Quantum Field Theory , 1995 .

[14]  V. Alfaro,et al.  Small distance behaviour in Einstein theory of gravitation , 1980 .

[15]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Is there quantum gravity in two dimensions , 1995, hep-lat/9505002.

[18]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[19]  É. Brézin,et al.  Renormalization of the Nonlinear Sigma Model in (Two + Epsilon) Dimension , 1976 .

[20]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[21]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[22]  K. Wilson Quantum field-theory models in less than 4 dimensions , 1973 .

[23]  Nonlocal effective gravitational field equations and the running of Newton's constant G , 2005, hep-th/0507017.

[24]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[25]  Simplicial Quantum Gravity , 1995, hep-lat/9508006.

[26]  Hamber Phases of four-dimensional simplicial quantum gravity. , 1992, Physical review. D, Particles and fields.

[27]  Michael E. Fisher,et al.  Scaling Theory for Finite-Size Effects in the Critical Region , 1972 .

[28]  Richard J. Hughes Some comments on asymptotic freedom , 1980 .

[29]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[30]  K. Schilcher,et al.  Determination of the gluon condensate from data in the charm-quark region , 2014, 1411.4500.

[31]  A. Coil The Large-Scale Structure of the Universe , 2012, 1202.6633.

[32]  Ruth M. Williams,et al.  Wheeler-DeWitt equation in 3+1 dimensions , 2012, 1212.3492.

[33]  Ruth M. Williams,et al.  Wheeler-DeWitt equation in2+1dimensions , 2012, 1207.3759.

[34]  C. Itzykson,et al.  Statistical Field Theory , 1989 .

[35]  G. Parisi On renormalizability of not renormalizable theories , 1973 .

[36]  R. Feynman Quantum theory of gravitation , 1963 .

[37]  P. W. Wang,et al.  Evolution of clustering length, large-scale bias, and host halo mass at 2 , 2014, 1411.5688.

[38]  H. Hamber Phases of simplicial quantum gravity in four dimensions Estimates for the critical exponents , 1993 .

[39]  Nonperturbative gravity and the spin of the lattice graviton , 2004, hep-th/0407039.

[40]  J. Laiho,et al.  Exploring Euclidean dynamical triangulations with a non-trivial measure term , 2014, 1401.3299.

[41]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[42]  Raymond Gastmans,et al.  Quantum gravity near two dimensions , 1978 .

[43]  S. Hawking,et al.  Path Integrals and the Indefiniteness of the Gravitational Action , 1978 .

[44]  E. Fradkin,et al.  Renormalizable asymtotically free quantum theory of gravity , 1981 .

[45]  Yoshihisa Kitazawa,et al.  Two-loop prediction for scaling exponents in (2 + ϵ)-dimensional quantum gravity , 1996 .

[46]  A. Barvinsky,et al.  Asymptotic freedom in higher-derivative quantum gravity , 1985 .

[47]  G. Parisi On Non-Renormalizable Interactions , 1977 .

[48]  Vacuum correlations at geodesic distance in quantum gravity , 1994, hep-th/9410086.

[49]  P. Peebles Principles of Physical Cosmology , 1993 .

[50]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[51]  Malcolm Longair Galaxy Formation , 1998 .

[52]  M. Duff,et al.  Quantum gravity in 2 + ε dimensions , 1978 .

[53]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[54]  M. Roček,et al.  The quantization of Regge calculus , 1984 .

[55]  Berg Exploratory numerical study of discrete quantum gravity. , 1985, Physical review letters.

[56]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[57]  Jean Zinn-Justin,et al.  Finite Size Effects in Phase Transitions , 1985 .

[58]  K. Wilson The renormalization group and critical phenomena , 1983 .

[59]  E. Fradkin,et al.  Renormalizable asymptotically free quantum theory of gravity , 1982 .

[60]  Kevin Falls Critical scaling in quantum gravity from the renormalisation group , 2015 .

[61]  É. Brézin,et al.  Renormalization of the nonlinear sigma model in 2 + epsilon dimensions. Application to the Heisenberg ferromagnets , 1976 .

[62]  N. Nielsen ASYMPTOTIC FREEDOM AS A SPIN EFFECT , 1981 .

[63]  Critical exponents of the N-vector model , 1998, cond-mat/9803240.

[64]  M. Roček,et al.  Quantum regge calculus , 1981 .

[65]  Ruth M. Williams,et al.  Higher derivative quantum gravity on a simplicial lattice , 1984 .

[66]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[67]  S. Hawking Quantum gravity and path integrals , 1978 .

[68]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[69]  H. Hamber Simplicial Quantum Gravity* , 2012 .

[70]  Z. Fodor,et al.  Light Hadron Masses from Lattice QCD , 2012, 1203.4789.

[71]  Ruth M. Williams,et al.  Gravitational Wilson loop in discrete quantum gravity , 2009, 0907.2652.

[72]  Yoshihisa Kitazawa,et al.  Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity☆ , 1993 .

[73]  J. Smit,et al.  Gravitational binding in 4D dynamical triangulation , 1996, hep-lat/9604023.

[74]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .

[75]  Ruth M. Williams,et al.  Simplicial quantum gravity with higher derivative terms: Formalism and numerical results in four dimensions , 1986 .

[76]  Giorgio Parisi,et al.  The theory of non-renormalizable interactions: The large N expansion , 1975 .

[77]  Scaling behavior of Ricci curvature at short distance near two dimensions , 1995, hep-th/9504126.

[78]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[79]  H. Hamber,et al.  Inconsistencies from a Running Cosmological Constant , 2013, 1301.6259.

[80]  A. Bazavov,et al.  Direct determination of the strange and light quark condensates from full lattice QCD , 2012, 1301.7204.

[81]  T. Regge General relativity without coordinates , 1961 .

[82]  Richard J. Hughes More comments on asymptotic freedom , 1981 .

[83]  J. Smit Continuum interpretation of the dynamical-triangulation formulation of quantum Einstein gravity , 2013, 1304.6339.

[84]  B. Dewitt QUANTUM THEORY OF GRAVITY. II. THE MANIFESTLY COVARIANT THEORY. , 1967 .

[85]  D. Gross Applications of the Renormalization Group to High-Energy Physics , 1975 .

[86]  Kenneth G. Wilson,et al.  Feynman graph expansion for critical exponents , 1972 .

[87]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[88]  B. Berg Entropy versus energy on a fluctuating four-dimensional Regge skeleton , 1986 .

[89]  Simplicial quantum gravity in three dimensions: Analytical and numerical results. , 1993, Physical review. D, Particles and fields.

[90]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[91]  Newtonian potential in quantum Regge gravity , 1994, hep-th/9406163.

[92]  R. J. Brunner,et al.  The SDSS Galaxy Angular Two-Point Correlation Function , 2013, 1303.2432.

[93]  Ruth M. Williams,et al.  Gravitational Wilson Loop and Large Scale Curvature , 2007, 0706.2342.

[94]  P. Hägler Hadron structure from lattice quantum chromodynamics , 2010 .

[95]  Yoshihisa Kitazawa,et al.  Scaling exponents in quantum gravity near two dimensions , 1993 .

[96]  E. Fradkin,et al.  Quantization of two-dimensional supergravity and critical dimensions for string models , 1981 .

[97]  Quantum gravity in large dimensions , 2005, hep-th/0512003.

[98]  Ruth M. Williams,et al.  Discrete Wheeler-DeWitt Equation , 2011, 1109.2530.

[99]  Herbert W. Hamber,et al.  Quantum Gravitation: The Feynman Path Integral Approach , 2008 .

[100]  Edouard Brézin,et al.  Introduction to Statistical Field Theory , 2010 .

[101]  M. Caselle,et al.  Regge Calculus as a Local Theory of the Poincare Group , 1989 .

[102]  Ruth M. Williams,et al.  NONPERTURBATIVE SIMPLICIAL QUANTUM GRAVITY , 1985 .