MtLAX 2 , a Functional Homologue of the Arabidopsis Auxin In fl ux Transporter AUX 1 , Is Required for Nodule Organogenesis 1 [ CC-BY ]

Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.R., F.R., J.L., C.-W.L., J.S., D.C., C.B., G.O., J.D.M.); Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401 (S.R., X.C., J.W.); Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom (S.W., J.A.D.); Plant and Crop Science Division, School of Biosciences, University of Nottingham, Nr Loughborough LE12 5RD, United Kingdom (M.J.B., R.S.); and Babraham Institute, Babraham Hall, Babraham CB22 3AT, United Kingdom (S.W.)

[1]  N. Provart,et al.  Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula , 2017, Journal of experimental botany.

[2]  Preetam Janakirama,et al.  Into the Root: How Cytokinin Controls Rhizobial Infection. , 2016, Trends in plant science.

[3]  Chun-Gen Hu,et al.  A Review of Auxin Response Factors (ARFs) in Plants , 2016, Front. Plant Sci..

[4]  F. Guinel Ethylene, a Hormone at the Center-Stage of Nodulation , 2015, Front. Plant Sci..

[5]  D. Wagner,et al.  AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis1[OPEN] , 2015, Plant Physiology.

[6]  T. Bisseling,et al.  Root developmental programs shape the Medicago truncatula nodule meristem , 2015, Development.

[7]  F. Frugier,et al.  Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1 , 2015, Plant Cell.

[8]  A. Breakspear,et al.  Cytokinin responses counterpoint auxin signaling during rhizobial infection , 2015, Plant signaling & behavior.

[9]  Jean-Michel Ané,et al.  Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN] , 2015, Plant Cell.

[10]  M. Trick,et al.  The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection[W][OPEN] , 2014, Plant Cell.

[11]  T. Bisseling,et al.  Fate map of Medicago truncatula root nodules , 2014, Development.

[12]  M. Lucas,et al.  Role of auxin during intercellular infection of Discaria trinervis by Frankia , 2014, Front. Plant Sci..

[13]  E. Courcelle,et al.  An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. , 2014, The Plant journal : for cell and molecular biology.

[14]  Sandra Bensmihen,et al.  Lateral root formation and patterning in Medicago truncatula. , 2014, Journal of plant physiology.

[15]  M. Parniske,et al.  CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. , 2014, Cell host & microbe.

[16]  M. Lucas,et al.  Lateral root development in Arabidopsis: fifty shades of auxin. , 2013, Trends in plant science.

[17]  Zeng-Yu Wang,et al.  Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of Medicago truncatula1[W][OA] , 2013, Plant Physiology.

[18]  Christophe Godin,et al.  Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues , 2013, Proceedings of the National Academy of Sciences.

[19]  M. Kawaguchi,et al.  Induction of localized auxin response during spontaneous nodule development in Lotus japonicus , 2013, Plant signaling & behavior.

[20]  Gabino Sanchez-Perez,et al.  Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis , 2012, Proceedings of the National Academy of Sciences.

[21]  M. Bennett,et al.  Auxin reflux between the endodermis and pericycle promotes lateral root initiation , 2012, The EMBO journal.

[22]  M. Kawaguchi,et al.  Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response , 2012, Development.

[23]  R. Swarup,et al.  AUX/LAX family of auxin influx carriers—an overview , 2012, Front. Plant Sci..

[24]  Stijn Dhondt,et al.  AUX/LAX Genes Encode a Family of Auxin Influx Transporters That Perform Distinct Functions during Arabidopsis Development[C][W] , 2012, Plant Cell.

[25]  Y. Kamiya,et al.  Multiple AUX/IAA–ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  Jennifer L. Nemhauser,et al.  Bipartite Promoter Element Required for Auxin Response1[C][W][OA] , 2011, Plant Physiology.

[27]  S. Long,et al.  Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. , 2011, Molecular plant-microbe interactions : MPMI.

[28]  A. Sugiyama,et al.  Auxin distribution and lenticel formation in determinate nodule of Lotus japonicus , 2011, Plant signaling & behavior.

[29]  A. Sugiyama,et al.  Involvement of auxin distribution in root nodule development of Lotus japonicus , 2011, Planta.

[30]  F. Ariel,et al.  MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. , 2011, The Plant journal : for cell and molecular biology.

[31]  M. Hanlon,et al.  Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. , 2011, The New phytologist.

[32]  M. J. Harrison,et al.  Two Medicago truncatula Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis[W] , 2010, Plant Cell.

[33]  G. Stacey,et al.  Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. , 2009, Annals of botany.

[34]  P. Hogeweg,et al.  Root System Architecture from Coupling Cell Shape to Auxin Transport , 2008, PLoS biology.

[35]  G. Weiller,et al.  A gene expression atlas of the model legume Medicago truncatula. , 2008, The Plant journal : for cell and molecular biology.

[36]  Tom Beeckman,et al.  The auxin influx carrier LAX3 promotes lateral root emergence , 2008, Nature Cell Biology.

[37]  J. G. Dubrovsky,et al.  Auxin acts as a local morphogenetic trigger to specify lateral root founder cells , 2008, Proceedings of the National Academy of Sciences.

[38]  Jean-Michel Claverie,et al.  Phylogeny.fr: robust phylogenetic analysis for the non-specialist , 2008, Nucleic Acids Res..

[39]  Klaus Palme,et al.  Comprehensive transcriptome analysis of auxin responses in Arabidopsis. , 2008, Molecular plant.

[40]  M. Bennett,et al.  Auxin Influx Activity Is Associated with Frankia Infection during Actinorhizal Nodule Formation in Casuarina glauca1[C][W][OA] , 2007, Plant Physiology.

[41]  Tom Beeckman,et al.  Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis , 2007, Development.

[42]  Bogumil J. Karas,et al.  A Cytokinin Perception Mutant Colonized by Rhizobium in the Absence of Nodule Organogenesis , 2007, Science.

[43]  S. Tabata,et al.  A Gain-of-Function Mutation in a Cytokinin Receptor Triggers Spontaneous Root Nodule Organogenesis , 2007, Science.

[44]  G. Stacey,et al.  Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. , 2006, The Plant journal : for cell and molecular biology.

[45]  M. Crespi,et al.  The Medicago truncatula CRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction with Sinorhizobium meliloti[W] , 2006, The Plant Cell Online.

[46]  A. Muñoz,et al.  Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition , 2006, Nature.

[47]  Satoshi Tabata,et al.  Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development , 2006, Nature.

[48]  U. Mathesius,et al.  Silencing the Flavonoid Pathway in Medicago truncatula Inhibits Root Nodule Formation and Prevents Auxin Transport Regulation by Rhizobia[W] , 2006, The Plant Cell Online.

[49]  J. Frugoli,et al.  RNAi Phenotypes and the Localization of a Protein::GUS Fusion Imply a Role for Medicago truncatula PIN Genes in Nodulation , 2006, Journal of Plant Growth Regulation.

[50]  J. B. Reid,et al.  Defective Long-Distance Auxin Transport Regulation in the Medicago truncatula super numeric nodules Mutant1[W] , 2006, Plant Physiology.

[51]  D. Inzé,et al.  Cell Cycle Progression in the Pericycle Is Not Sufficient for SOLITARY ROOT/IAA14-Mediated Lateral Root Initiation in Arabidopsis thalianaw⃞ , 2005, The Plant Cell Online.

[52]  O. Yu,et al.  RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1 , 2005, Plant Physiology.

[53]  R. Amasino,et al.  The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche , 2004, Cell.

[54]  J. Frugoli,et al.  The PIN and LAX families of auxin transport genes in Medicago truncatula , 2004, Molecular Genetics and Genomics.

[55]  G. Jürgens,et al.  Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation , 2003, Cell.

[56]  H. Spaink,et al.  Auxin distribution in Lotus japonicus during root nodule development , 2003, Plant Molecular Biology.

[57]  D. Cook,et al.  Dual Genetic Pathways Controlling Nodule Number inMedicago truncatula 1 , 2003, Plant Physiology.

[58]  N. Goto,et al.  Auxin and Ethylene Response Interactions during Arabidopsis Root Hair Development Dissected by Auxin Influx Modulators , 2002, Plant Physiology.

[59]  G. Sandberg,et al.  AUX1 Promotes Lateral Root Formation by Facilitating Indole-3-Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling , 2002, The Plant Cell Online.

[60]  R Swarup,et al.  Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. , 2001, Genes & development.

[61]  A. Murphy,et al.  Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. , 2001, Plant physiology.

[62]  D. Inzé,et al.  Auxin Transport Promotes Arabidopsis Lateral Root Initiation , 2001, Plant Cell.

[63]  S. May,et al.  Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. , 2001, Molecular plant-microbe interactions : MPMI.

[64]  H. Spaink,et al.  Lipochitin Oligosaccharides from Rhizobium leguminosarum bv. viciae Reduce Auxin Transport Capacity in Vicia sativa subsp. nigra Roots , 1999 .

[65]  A. Timmers,et al.  Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. , 1999, Development.

[66]  G. Hagen,et al.  Dimerization and DNA binding of auxin response factors. , 1999, The Plant journal : for cell and molecular biology.

[67]  Alan Marchant,et al.  AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues , 1999, The EMBO journal.

[68]  R. J. Pitts,et al.  Auxin and ethylene promote root hair elongation in Arabidopsis. , 1998, The Plant journal : for cell and molecular biology.

[69]  H. Spaink,et al.  Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. , 1998, The Plant journal : for cell and molecular biology.

[70]  G. Hagen,et al.  Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. , 1997, The Plant cell.

[71]  G. Hagen,et al.  ARF1, a transcription factor that binds to auxin response elements. , 1997, Science.

[72]  D. Davies,et al.  A simple system for pea transformation , 1997, Plant Cell Reports.

[73]  T. Bisseling,et al.  Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. , 1997, Development.

[74]  K. Feldmann,et al.  Arabidopsis AUX1 Gene: A Permease-Like Regulator of Root Gravitropism , 1996, Science.

[75]  G. Hagen,et al.  Composite structure of auxin response elements. , 1995, The Plant cell.

[76]  G. Fairchild,et al.  A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. , 1990, The New phytologist.

[77]  T. Bisseling,et al.  Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[78]  N. Peters,et al.  Alfalfa Root Exudates and Compounds which Promote or Inhibit Induction of Rhizobium meliloti Nodulation Genes. , 1988, Plant physiology.

[79]  P. Rubery,et al.  Naturally Occurring Auxin Transport Regulators , 1988, Science.

[80]  B. Rolfe,et al.  Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii , 1987, The EMBO journal.

[81]  O. N. Allen,et al.  PSEUDONODULATION OF LEGUMINOUS PLANTS INDUCED BY 2‐BROMO‐3,5‐DICHLOROBENZOIC ACID , 1953 .

[82]  K. Mysore,et al.  Reverse genetics in medicago truncatula using Tnt1 insertion mutants. , 2011, Methods in molecular biology.

[83]  P. Benfey,et al.  Organization and cell differentiation in lateral roots of Arabidopsis thaliana. , 1997, Development.

[84]  E. Journet,et al.  ENOD12 gene expression as a molecular marker for comparing Rhizobium-dependent and -independent nodulation in alfalfa , 1994 .