Comparison of calorimetric plasma diagnostics in a plasma downstream reactor

The energy influx in a non-equilibrium plasma in the afterglow of a plasma downstream reactor has been measured by two different calorimetric probe types. The radio frequency discharge is investigated for oxygen (10–100%)–argon (90–0%) mixtures at relatively high gas flow rates (750–3000 sccm) and pressures (100–350 Pa). The main process parameters influencing the energy influx are the plasma power, the system pressure and the total gas flow rate. Even though the size, geometry and material composition of the used probe types are different, comparable energy flux values are achieved. Depending on the process parameters, energy fluxes between around 100 and 3500 W m−2 are found and the variation of the pressure and total gas flow rate suggests a highly flow-dependent plasma density distribution in the reactor.

[1]  H. Kersten,et al.  Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition , 2010 .

[2]  A. Yanguas-Gil,et al.  Inactivation of Bacteria and Biomolecules by Low-Pressure Plasma Discharges , 2010 .

[3]  T. Trottenberg,et al.  A calorimetric probe for plasma diagnostics. , 2010, The Review of scientific instruments.

[4]  U. Helmersson,et al.  Energy flux measurements in high power impulse magnetron sputtering , 2009 .

[5]  C. Roth,et al.  Thermal Characterization and Optimization of a Plasma Downstream Reactor for Particle Surface Modification , 2009 .

[6]  P. Rohr,et al.  Application of Plasma Surface Treatment to Solid-State Microscopic Particulates , 2009 .

[7]  P. Rohr,et al.  Flowability Modification of Lactose Powder by Plasma Enhanced Chemical Vapor Deposition , 2007 .

[8]  A. Rossi,et al.  Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor – process, wettability improvement and ageing effects , 2005 .

[9]  H. Kersten,et al.  Power outflux from the plasma: an important parameter in surface processing , 2004 .

[10]  F. Scholze,et al.  Plasma and ion beam characterization by non-conventional methods , 2004 .

[11]  Gmw Gerrit Kroesen,et al.  The energy balance at substrate surfaces during plasma processing , 2001 .

[12]  R. Hippler,et al.  Investigations on the energy influx at plasma processes by means of a simple thermal probe , 2000 .

[13]  G. Kroesen,et al.  Microcalorimetry of dust particles in a radio-frequency plasma , 2000 .

[14]  M. Otte,et al.  Energy influx from an rf plasma to a substrate during plasma processing , 2000 .

[15]  R. Wendt,et al.  Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system , 1997 .

[16]  K. Colbow,et al.  A new optical temperature measurement technique for semiconductor substrates in molecular beam epitaxy , 1991 .

[17]  J. Thornton Substrate heating in cylindrical magnetron sputtering sources , 1978 .

[18]  Volker Gnielinski,et al.  Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung , 1975 .

[19]  C. D. Thurmond The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP , 1975 .

[20]  C. M. Ferreira,et al.  Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low‐pressure argon positive column , 1985 .