Brain MRI Image Segmentation in View of Tumor Detection: Application to Multiple Sclerosis

Multiple Sclerosis (MS) is an inflammatory and demyelization disease that causes the disorder of the central nervous system. Magnetic resonance imaging (MRI) becomes the most important means for a better understanding of the disease. A variety of methods to segment these lesions are available to make the lesions detection less fastidious. So, we use a robust algorithm on EM algorithm that proposes an original detection scheme for outliers. The results obtained are very satisfactory.

[1]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[2]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[5]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[6]  Grégoire Malandain,et al.  Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[7]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[8]  Reto Meuli,et al.  Robust parameter estimation of intensity distributions for brain magnetic resonance images , 1998, IEEE Transactions on Medical Imaging.

[9]  Guillaume Dugas-Phocion,et al.  Segmentation d'IRM cérébrales multi-séquences et application à la sclérose en plaques. (Segmentation of multi-sequence brain mri and application to multiple slerosis) , 2006 .

[10]  Guillaume Flandin,et al.  Utilisation d'informations géométriques pour l'analyse statistique des données d'IRM fonctionnelle. (ntroduction of geometrical features for the statistical analysis of functional MRI data) , 2004 .

[11]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[12]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[13]  Nicholas Ayache,et al.  Computer Vision, Virtual Reality and Robotics in Medicine , 1995, Lecture Notes in Computer Science.

[14]  Mohamed Ali Mahjoub,et al.  Image segmentation by adaptive distance based on EM algorithm , 2012, ArXiv.