2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): high stability, large excitonic effect and high charge carrier mobility

B2 pairs-substituted MoX2 monolayers provide options for future 2D electronic devices.

[1]  R. Wu,et al.  How does the electric current propagate through fully-hydrogenated borophene? , 2018, Physical chemistry chemical physics : PCCP.

[2]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[3]  Qian Wang,et al.  A New Anisotropic Dirac Cone Material: A B2S Honeycomb Monolayer. , 2018, The journal of physical chemistry letters.

[4]  Jinlan Wang,et al.  Au6S2 monolayer sheets: metallic and semiconducting polymorphs , 2017 .

[5]  Hongli Zhu,et al.  Freestanding Metallic 1T MoS2 with Dual Ion Diffusion Paths as High Rate Anode for Sodium‐Ion Batteries , 2017 .

[6]  Zhongying Wang,et al.  Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. , 2017, Environmental science & technology.

[7]  W. Duan,et al.  Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors. , 2017, Physical review letters.

[8]  A. Krasheninnikov,et al.  Structural Transformations in Two-Dimensional Transition-Metal Dichalcogenide MoS2 under an Electron Beam: Insights from First-Principles Calculations. , 2017, The journal of physical chemistry letters.

[9]  Y. Iwasa,et al.  Highly crystalline 2D superconductors , 2017, 1703.03541.

[10]  Zijing Ding,et al.  Chemical Stabilization of 1T' Phase Transition Metal Dichalcogenides with Giant Optical Kerr Nonlinearity. , 2017, Journal of the American Chemical Society.

[11]  Hongli Zhu,et al.  Two-Dimensional Water-Coupled Metallic MoS2 with Nanochannels for Ultrafast Supercapacitors. , 2017, Nano letters.

[12]  Jinhua Ye,et al.  Targeted Synthesis of 2H‐ and 1T‐Phase MoS2 Monolayers for Catalytic Hydrogen Evolution , 2016, Advanced materials.

[13]  Dapeng Wu,et al.  The electronic transport properties of transition-metal dichalcogenide lateral heterojunctions , 2016 .

[14]  Zhuhua Zhang,et al.  Two-dimensional materials: Polyphony in B flat. , 2016, Nature chemistry.

[15]  C. Sow,et al.  Interactions between lasers and two-dimensional transition metal dichalcogenides. , 2016, Chemical Society reviews.

[16]  A. Du,et al.  Graphene-like Two-Dimensional Ionic Boron with Double Dirac Cones at Ambient Condition. , 2016, Nano letters.

[17]  John Bell,et al.  Predicting Single-Layer Technetium Dichalcogenides (TcX₂, X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis. , 2016, ACS applied materials & interfaces.

[18]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[19]  A. Du,et al.  Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties , 2015, Scientific Reports.

[20]  Jeunghee Park,et al.  Red-to-Ultraviolet Emission Tuning of Two-Dimensional Gallium Sulfide/Selenide. , 2015, ACS nano.

[21]  W. Duan,et al.  Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin-orbital-coupling. , 2015, Nanoscale.

[22]  P. Cui,et al.  Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials. , 2015, Physical review letters.

[23]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[24]  S. Louie,et al.  Tunable Magnetism and Half-Metallicity in Hole-Doped Monolayer GaSe. , 2014, Physical review letters.

[25]  Z. Y. Zhang,et al.  Theoretical Prediction of Carrier Mobility in Few-Layer BC2N. , 2014, The journal of physical chemistry letters.

[26]  Yingchun Cheng,et al.  Origin of the phase transition in lithiated molybdenum disulfide. , 2014, ACS nano.

[27]  Yeliang Wang,et al.  First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer , 2014 .

[28]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[29]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[30]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[31]  Mark H Griep,et al.  Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. , 2014, Nano letters.

[32]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[33]  Ying Dai,et al.  Engineering a topological phase transition in β-InSe via strain , 2013 .

[34]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[35]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[36]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[37]  Yanming Ma,et al.  An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. , 2012, The Journal of chemical physics.

[38]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[39]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[40]  Xiaojun Wu,et al.  Two-dimensional boron monolayer sheets. , 2012, ACS nano.

[41]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[42]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[43]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[44]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[45]  Zhigang Shuai,et al.  Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. , 2011, ACS nano.

[46]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[47]  I. Tanaka,et al.  Phonon-phonon interactions in transition metals , 2011, 1103.0137.

[48]  Phaedon Avouris,et al.  Graphene: electronic and photonic properties and devices. , 2010, Nano letters.

[49]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[50]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[51]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[52]  H. Hillebrecht,et al.  Boron: elementary challenge for experimenters and theoreticians. , 2009, Angewandte Chemie.

[53]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[54]  L. Cario,et al.  Superconducting density of states and vortex cores of 2H-NbS2. , 2008, Physical review letters.

[55]  Kenji Watanabe,et al.  Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure , 2007, Science.

[56]  M. Breese,et al.  Proton beam writing , 2007 .

[57]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[58]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[59]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[60]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[61]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[62]  Y. Moritomo,et al.  Reconstruction of the electronic structure in half-metallic CoS 2 , 1999 .

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  Steven G. Louie,et al.  Electron-Hole Excitations in Semiconductors and Insulators , 1998 .

[65]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998, cond-mat/9803194.

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[69]  Kohn,et al.  Local density-functional theory of frequency-dependent linear response. , 1985, Physical review letters.

[70]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .