Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia

[1]  Qian Zhang,et al.  GSA: Genome Sequence Archive* , 2017, Genom. Proteom. Bioinform..

[2]  M. Salto‐Tellez,et al.  RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC , 2017, Leukemia.

[3]  Michael P. Lisanti,et al.  Cancer metabolism: a therapeutic perspective , 2017, Nature Reviews Clinical Oncology.

[4]  Can Küçük,et al.  Clinicopathologic Characterization of Aggressive Natural Killer Cell Leukemia Involving Different Tissue Sites , 2016, The American journal of surgical pathology.

[5]  K. Sakamoto,et al.  Frequent BCOR aberrations in extranodal NK/T‐Cell lymphoma, nasal type , 2016, Genes, chromosomes & cancer.

[6]  R. Siebert,et al.  Genes encoding members of the JAK‐STAT pathway or epigenetic regulators are recurrently mutated in T‐cell prolymphocytic leukaemia , 2016, British journal of haematology.

[7]  Xuemei Lu,et al.  Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution , 2015, Proceedings of the National Academy of Sciences.

[8]  C. Dang,et al.  MYC, Metabolism, and Cancer. , 2015, Cancer discovery.

[9]  F. Delhommeau,et al.  Effect of mutation order on myeloproliferative neoplasms. , 2015, The New England journal of medicine.

[10]  A. Lane,et al.  Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. , 2015, The Journal of clinical investigation.

[11]  Can Alkan,et al.  Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells , 2015, Nature Communications.

[12]  B. Ebert,et al.  Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms. , 2015, Blood.

[13]  W. Vainchenker,et al.  TET2 loss, a rescue of JAK2V617F HSCs. , 2015, Blood.

[14]  A. Iwama,et al.  Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. , 2015, Blood.

[15]  W. Xue,et al.  Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma , 2014, Nature Genetics.

[16]  Benjamin J. Raphael,et al.  Pan-Cancer Network Analysis Identifies Combinations of Rare Somatic Mutations across Pathways and Protein Complexes , 2014, Nature Genetics.

[17]  T. Rausch,et al.  The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse , 2014, Haematologica.

[18]  Heather L. Mulder,et al.  Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. , 2014, The New England journal of medicine.

[19]  J. Ochocki,et al.  Fructose-1, 6-bisphosphatase opposes renal carcinoma progression , 2014, Nature.

[20]  N. Harris,et al.  A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. , 2012, Blood.

[21]  R. Eisenman,et al.  An overview of MYC and its interactome. , 2014, Cold Spring Harbor perspectives in medicine.

[22]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[23]  David Haussler,et al.  Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE) , 2013, Bioinform..

[24]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[25]  C. Dang MYC, metabolism, cell growth, and tumorigenesis. , 2013, Cold Spring Harbor perspectives in medicine.

[26]  J. Turkson,et al.  Therapeutic modulators of STAT signalling for human diseases , 2013, Nature Reviews Drug Discovery.

[27]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[28]  Y. Xia,et al.  First‐line combination of gemcitabine, oxaliplatin, and L‐asparaginase (GELOX) followed by involved‐field radiation therapy for patients with stage IE/IIE extranodal natural killer/T‐cell lymphoma , 2013, Cancer.

[29]  Michael R. Green,et al.  Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. , 2012, Cancer cell.

[30]  S. Mustjoki,et al.  STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. , 2012, Blood.

[31]  David A. Orlando,et al.  Revisiting Global Gene Expression Analysis , 2012, Cell.

[32]  S. Mustjoki,et al.  Somatic STAT3 mutations in large granular lymphocytic leukemia. , 2012, The New England journal of medicine.

[33]  A. Trumpp,et al.  Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts , 2011, Oncogene.

[34]  Hongkai Ji,et al.  Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation , 2011, PloS one.

[35]  Raul Rabadan,et al.  Analysis of the Coding Genome of Diffuse Large B-Cell Lymphoma , 2011, Nature Genetics.

[36]  J. Zucman‐Rossi,et al.  Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas , 2011, The Journal of experimental medicine.

[37]  R. Suzuki Treatment of advanced extranodal NK/T cell lymphoma, nasal-type and aggressive NK-cell leukemia , 2010, International journal of hematology.

[38]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[39]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[40]  Hua Yu,et al.  STATs in cancer inflammation and immunity: a leading role for STAT3 , 2009, Nature Reviews Cancer.

[41]  M. Samanta,et al.  Epstein–Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling , 2008, Oncogene.

[42]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[43]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[44]  Bianca Sperl,et al.  Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. , 2006, Chemistry & biology.

[45]  D.Y. Lee,et al.  Aggressive NK‐cell leukaemia associated with reactive haemophagocytic syndrome , 2006, Clinical and experimental dermatology.

[46]  H. Tagawa,et al.  Genome‐wide array‐based comparative genomic hybridization of natural killer cell lymphoma/leukemia: Different genomic alteration patterns of aggressive NK‐cell leukemia and extranodal Nk/T‐cell lymphoma, nasal type , 2005, Genes, chromosomes & cancer.

[47]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Kawa,et al.  Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells , 2004, Leukemia.

[49]  T. Naoe,et al.  Epstein–Barr virus‐encoded poly(A)− RNA supports Burkitt's lymphoma growth through interleukin‐10 induction , 2000, The EMBO journal.

[50]  Y. Matsuo,et al.  A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation , 2000, Leukemia.

[51]  T. Hirano,et al.  Stat3 Is Required for the Gp130-mediated Full Activation of the C-myc Gene , 1999 .

[52]  J. Chan,et al.  Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. , 1997, Blood.

[53]  J. Gong,et al.  Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. , 1994, Leukemia.