Bangladesh in the era of malaria elimination.

[1]  I. Kleinschmidt,et al.  Efficacy of pyriproxyfen-pyrethroid long-lasting insecticidal nets (LLINs) and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs for malaria control in Benin: a cluster-randomised, superiority trial , 2023, The Lancet.

[2]  Sabyasachi Das,et al.  Genomic characterization of Plasmodium falciparum genes associated with anti-folate drug resistance and treatment outcomes in eastern India: A molecular surveillance study from 2008 to 2017 , 2022, Frontiers in Cellular and Infection Microbiology.

[3]  R. Haque,et al.  Human behaviour directs household-level exposure to malaria vectors in Bandarban, Bangladesh , 2022, Malaria Journal.

[4]  C. John,et al.  Evaluation of an ultrasensitive HRP2–based rapid diagnostic test for detection of asymptomatic Plasmodium falciparum parasitaemia among children in western Kenya , 2022, Malaria Journal.

[5]  J. Bailey,et al.  Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda , 2022, Nature Communications.

[6]  Tran Dang Nguyen,et al.  Pre-existing partner-drug resistance to artemisinin combination therapies facilitates the emergence and spread of artemisinin resistance: a consensus modelling study , 2022, The Lancet. Microbe.

[7]  M. Eliades,et al.  Private Sector Contributions to National Malaria Surveillance Systems in Elimination Settings: Lessons Learned from Cambodia, Lao PDR, Myanmar, and Vietnam , 2022, The American journal of tropical medicine and hygiene.

[8]  C. Koepfli,et al.  Performance of highly sensitive and conventional rapid diagnostic tests for clinical and subclinical Plasmodium falciparum infections, and hrp2/3 deletion status in Burundi , 2022, PLOS global public health.

[9]  R. Price,et al.  Heterogeneity in prevalence of subclinical Plasmodium falciparum and Plasmodium vivax infections but no parasite genomic clustering in the Chittagong Hill Tracts, Bangladesh , 2022, Malaria journal.

[10]  Abdullah S. Ali,et al.  High-throughput Plasmodium falciparum hrp2 and hrp3 gene deletion typing by digital PCR to monitor malaria rapid diagnostic test efficacy , 2022, eLife.

[11]  Diego Ayala,et al.  Diurnal biting of malaria mosquitoes in the Central African Republic indicates residual transmission may be “out of control” , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Guofa Zhou,et al.  Community structure and insecticide resistance of malaria vectors in northern-central Myanmar , 2022, Parasites & vectors.

[13]  Y. Gebre,et al.  High sensitivity of a novel rapid test for the diagnosis of clinical and subclinical Plasmodium falciparum infections in a high transmission setting in Burundi , 2022, medRxiv.

[14]  M. Faiz,et al.  Common Health Problems of ‘Forcibly Displaced Myanmar Nationals’ “(FDMNs)” of Bangladesh , 2022, Journal of Medicine.

[15]  R. Haque,et al.  Assessment of Plasmodium falciparum Artemisinin Resistance Independent of kelch13 Polymorphisms and with Escalating Malaria in Bangladesh , 2022, mBio.

[16]  T. Horii,et al.  Evidence of Artemisinin-Resistant Malaria in Africa. , 2021, The New England journal of medicine.

[17]  D. Fidock,et al.  Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness , 2021, eLife.

[18]  C. Koepfli,et al.  The lead-up to epidemic transmission: malaria trends and control interventions in Burundi 2000 to 2019 , 2021, Malaria journal.

[19]  Sara E. Canavati,et al.  Results from a malaria indicator survey highlight the importance of routine data capture in high-risk forest and farm transmission sites in Vietnam to tailor location-specific malaria elimination interventions , 2021, PloS one.

[20]  M. White,et al.  Forest malaria in Cambodia: the occupational and spatial clustering of Plasmodium vivax and Plasmodium falciparum infection risk in a cross-sectional survey in Mondulkiri province, Cambodia , 2020, Malaria journal.

[21]  R. Haque,et al.  Persistence of Markers of Chloroquine Resistance in Plasmodium falciparum in Bangladesh. , 2020, The American journal of tropical medicine and hygiene.

[22]  C. Sutherland,et al.  Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing , 2020, FEMS microbiology reviews.

[23]  R. Price,et al.  Precarity at the Margins of Malaria Control in the Chittagong Hill Tracts in Bangladesh: A Mixed-Methods Study , 2020, Pathogens.

[24]  D. Fidock,et al.  Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda , 2020, Nature Medicine.

[25]  D. Fidock,et al.  Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance , 2020, eLife.

[26]  R. Haque,et al.  Preliminary Report of Pyrethroid Resistance in Anopheles vagus, an Important Malaria Vector in Bangladesh. , 2020, The American journal of tropical medicine and hygiene.

[27]  K. Battle,et al.  Plasmodium vivax in the Era of the Shrinking P. falciparum Map , 2020, Trends in parasitology.

[28]  D. Fidock,et al.  Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13 , 2020, PLoS pathogens.

[29]  D. Kwiatkowski,et al.  Mapping the travel patterns of people with malaria in Bangladesh , 2020, BMC Medicine.

[30]  L. Cui,et al.  Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance , 2020, mBio.

[31]  D. V. van Schalkwyk,et al.  A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections , 2020, bioRxiv.

[32]  B. Bergmann,et al.  A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites , 2020, Science.

[33]  A. Dondorp,et al.  HRP2: Transforming Malaria Diagnosis, but with Caveats. , 2019, Trends in parasitology.

[34]  P. Rosenthal,et al.  Antimalarial drug resistance in Africa: the calm before the storm? , 2019, The Lancet. Infectious diseases.

[35]  Joana C. Silva,et al.  A multiplex qPCR approach for detection of pfhrp2 and pfhrp3 gene deletions in multiple strain infections of Plasmodium falciparum , 2019, Scientific Reports.

[36]  Richard J Maude,et al.  Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study , 2019, The Lancet. Infectious diseases.

[37]  D. Fidock,et al.  Accelerated evolution and spread of multidrug-resistant Plasmodium falciparum takes down the latest first-line antimalarial drug in southeast Asia , 2019, The Lancet. Infectious diseases.

[38]  Amy Wesolowski,et al.  Mapping imported malaria in Bangladesh using parasite genetic and human mobility data , 2019, eLife.

[39]  Sabyasachi Das,et al.  Novel pfkelch13 gene polymorphism associates with artemisinin resistance in eastern India. , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[40]  Sabyasachi Das,et al.  Evidence of Artemisinin-Resistant Plasmodium falciparum Malaria in Eastern India. , 2018, The New England journal of medicine.

[41]  D. Hartl,et al.  Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility , 2018, Proceedings of the National Academy of Sciences.

[42]  Juliana M. Sá,et al.  A single nucleotide polymorphism in the Plasmodium falciparum atg18 gene associates with artemisinin resistance and confers enhanced parasite survival under nutrient deprivation , 2018, Malaria Journal.

[43]  P. Gething,et al.  Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether–lumefantrine and artesunate–amodiaquine in Africa , 2018, BMJ Global Health.

[44]  R. Price,et al.  Implications of population-level immunity for the emergence of artemisinin-resistant malaria: a mathematical model , 2018, Malaria Journal.

[45]  I. Coppens,et al.  Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance. , 2018, Blood.

[46]  K. Haldar,et al.  Drug resistance in Plasmodium , 2018, Nature Reviews Microbiology.

[47]  R. Haque,et al.  Abundance and Dynamics of Anopheles (Diptera: Culicidae) Larvae in a Malaria Endemic Area of Bangladesh , 2017, Journal of Medical Entomology.

[48]  R. Haque,et al.  Case Report: A Case of Plasmodium falciparum hrp2 and hrp3 Gene Mutation in Bangladesh. , 2017, The American journal of tropical medicine and hygiene.

[49]  R. Price,et al.  Molecular analysis demonstrates high prevalence of chloroquine resistance but no evidence of artemisinin resistance in Plasmodium falciparum in the Chittagong Hill Tracts of Bangladesh , 2017, Malaria Journal.

[50]  Mehul Dhorda,et al.  The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study , 2017, The Lancet. Infectious diseases.

[51]  Peng Chen,et al.  Performance of pfHRP2 versus pLDH antigen rapid diagnostic tests for the detection of Plasmodium falciparum: a systematic review and meta-analysis , 2017, Archives of medical science : AMS.

[52]  J. Simpson,et al.  Host immunity to Plasmodium falciparum and the assessment of emerging artemisinin resistance in a multinational cohort , 2017, Proceedings of the National Academy of Sciences.

[53]  Sesh A. Sundararaman,et al.  Selective Whole-Genome Amplification Is a Robust Method That Enables Scalable Whole-Genome Sequencing of Plasmodium vivax from Unprocessed Clinical Samples , 2017, mBio.

[54]  P. Rosenthal,et al.  Changing Antimalarial Drug Resistance Patterns Identified by Surveillance at Three Sites in Uganda , 2016, The Journal of infectious diseases.

[55]  Shripad Tuljapurkar,et al.  Distinct genomic architecture of Plasmodium falciparum populations from South Asia. , 2016, Molecular and biochemical parasitology.

[56]  G. Glass,et al.  Subclinical Plasmodium falciparum infections act as year-round reservoir for malaria in the hypoendemic Chittagong Hill districts of Bangladesh. , 2016, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[57]  C. Rogier,et al.  A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. , 2016, The New England journal of medicine.

[58]  D. Fidock,et al.  K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates , 2015, Science.

[59]  E. Ashley,et al.  The duration of Plasmodium falciparum infections , 2014, Malaria Journal.

[60]  R. Haque,et al.  Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009–2013) , 2014, Malaria Journal.

[61]  G. Glass,et al.  The practice of jhum cultivation and its relationship to Plasmodium falciparum infection in the Chittagong Hill Districts of Bangladesh. , 2014, The American journal of tropical medicine and hygiene.

[62]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[63]  R. Haque,et al.  High prevalence of asymptomatic malaria in south-eastern Bangladesh , 2014, Malaria Journal.

[64]  B. Genton,et al.  A molecular marker of artemisinin-resistant Plasmodium falciparum malaria , 2013, Nature.

[65]  Saorin Kim,et al.  Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. , 2013, The Lancet. Infectious diseases.

[66]  N. Ganguly,et al.  Tackling the malaria problem in the South-East Asia Region: Need for a change in policy? , 2013, The Indian journal of medical research.

[67]  R. Haque,et al.  Current Status of Artemisinin-Resistant falciparum Malaria in South Asia: A Randomized Controlled Artesunate Monotherapy Trial in Bangladesh , 2012, PloS one.

[68]  R. Haque,et al.  Genotyping of Plasmodium falciparum using antigenic polymorphic markers and to study anti-malarial drug resistance markers in malaria endemic areas of Bangladesh , 2012, Malaria Journal.

[69]  M. Rahman Insecticide substitutes for DDT to control mosquitoes may be causes of several diseases , 2012, Environmental Science and Pollution Research.

[70]  S. Eridani Sickle cell protection from malaria , 2011, Hematology reports.

[71]  Caroline W. Kabaria,et al.  The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis , 2011, Parasites & Vectors.

[72]  T. Tsukahara,et al.  High prevalence of sulfadoxine/pyrimethamine resistance alleles in Plasmodium falciparum parasites from Bangladesh. , 2010, Parasitology international.

[73]  Toshihiro Mita,et al.  Spread and evolution of Plasmodium falciparum drug resistance. , 2009, Parasitology international.

[74]  K. Silamut,et al.  Artemisinin resistance in Plasmodium falciparum malaria. , 2009, The New England journal of medicine.

[75]  M. Fukuda,et al.  Evidence of artemisinin-resistant malaria in western Cambodia. , 2008, The New England journal of medicine.

[76]  OUP accepted manuscript , 2021, Clinical Infectious Diseases.