Matrix Partitions with Finitely Many Obstructions

Abstract We ask which matrix partition problems admit a characterization by a finite set of forbidden induced subgraphs. We prove some positive and some negative results; these are sufficient to classify all such problems with matrices of size up to five. We also consider related questions on the descriptive and computational complexity of matrix partition problems.

[1]  Bruno Courcelle,et al.  Graph Operations and Monadic Second-Order Logic: A Survey , 2000, LPAR.

[2]  Daniel Král,et al.  Two algorithms for general list matrix partitions , 2005, SODA '05.

[3]  Yoshiharu Kohayakawa,et al.  Finding Skew Partitions Efficiently , 2000, J. Algorithms.

[4]  Kathie Cameron,et al.  The list partition problem for graphs , 2004, SODA '04.

[5]  Pavol Hell,et al.  Full Constraint Satisfaction Problems , 2006, SIAM J. Comput..

[6]  P. Hell,et al.  Generalized Colourings (Matrix Partitions) of Cographs , 2006 .

[7]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[8]  Sulamita Klein,et al.  List Partitions , 2003, SIAM J. Discret. Math..

[9]  Pavol Hell,et al.  On realizations of point determining graphs, and obstructions to full homomorphisms , 2008, Discret. Math..

[10]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[11]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[12]  Pavol Hell,et al.  Matrix partitions of perfect graphs , 2006, Discret. Math..

[13]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..

[14]  Peter L. Hammer,et al.  Bisplit graphs , 2005, Discret. Math..

[15]  Albert Atserias,et al.  On digraph coloring problems and treewidth duality , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[16]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[17]  Sulamita Klein,et al.  Partitioning chordal graphs into independent sets and cliques , 2004, Discret. Appl. Math..

[18]  NARAYAN VIKAS,et al.  Computational Complexity of Compaction to Reflexive Cycles , 2002, SIAM J. Comput..

[19]  A. A. Chernyak,et al.  About recognizing (a b) classes of polar graphs , 1986 .

[20]  Sulamita Klein,et al.  List matrix partitions of chordal graphs , 2005, Theor. Comput. Sci..

[21]  Pavol Hell,et al.  Digraph matrix partitions and trigraph homomorphisms , 2006, Discret. Appl. Math..

[22]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[23]  Benjamin Rossman,et al.  Existential positive types and preservation under homomorphisms , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[24]  P. Hell From Graph Colouring to Constraint Satisfaction: There and Back Again , 2006 .

[25]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[26]  Wing Xie,et al.  Obstructions to Trigraph Homomorphisms , 2006 .

[27]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[28]  Vasek Chvátal,et al.  Star-cutsets and perfect graphs , 1985, J. Comb. Theory, Ser. B.

[29]  Pavol Hell,et al.  Bi-arc graphs and the complexity of list homomorphisms , 2003, J. Graph Theory.

[30]  Arkady A. Chernyak,et al.  About recognizing (alpha, beta) classes of polar , 1986, Discret. Math..

[31]  Celina M. H. de Figueiredo,et al.  Finding H-partitions efficiently , 2005, RAIRO Theor. Informatics Appl..